Warmup:
Simplify.

1) $2 \sqrt{6}+3 \sqrt{6}+3 \sqrt{2}$
2) $-2 \sqrt{3}+2 \sqrt{27}+3 \sqrt{12}$

$$
\sqrt{5 \sqrt{6}+3 \sqrt{2}}
$$

$$
\begin{aligned}
& -2 \sqrt{3}+2 \sqrt{9 \cdot 3}+3 \sqrt{3 \cdot 4} \\
& -2 \sqrt{3}+2 \sqrt{3 \cdot 3 \cdot 3}+3 \sqrt{3 \cdot 2 \cdot 2} \\
& -2 \sqrt{3}+2 \cdot 3 \sqrt{3}+3 \cdot 2 \sqrt{3} \\
& -2 \sqrt{3}+6 \sqrt{3}+6 \sqrt{3}
\end{aligned}
$$

$$
10 \sqrt{3} \lambda
$$

Simplify.

1) $2 \sqrt{20} \cdot-2 \sqrt{10}$
2) $-5 \sqrt{6} \cdot-3 \sqrt{3}$
3) $\sqrt{5 a} \cdot-\sqrt{2 a^{2}}$
4) $\sqrt{3 x^{2}} \cdot \sqrt{12 x^{2}}$

$$
\begin{aligned}
& \text {] }-4 \sqrt{20 \cdot 10} \\
& \text { H2] } 15 \sqrt{6.3} \\
& \text { \#3] }-\sqrt{5 \cdot 2 \cdot a \cdot 2^{t}} \\
& -4 \sqrt{2 \cdot 10 \cdot 10} \\
& \text { 15 } \sqrt{2 \cdot 3 \cdot 3} \\
& -4 \cdot 10 \sqrt{2} \\
& -40 \sqrt{2} \\
& 15.3 \sqrt{2} \\
& 45 \sqrt{2} \\
& \text { 74] } \\
& \begin{array}{l}
\sqrt{3 \cdot 12 \cdot x^{2} \cdot x^{2}} \\
\sqrt{3 \cdot 3 \cdot 4 \cdot x^{2} \cdot x^{2}} \\
\sqrt{3 \cdot 3 \cdot 2 \cdot 2 \cdot x^{2} \cdot x^{2}}
\end{array} \\
& 3 \cdot 2 \cdot x^{2}=6 x^{2}
\end{aligned}
$$

HW \#7 Answer Key
1)

$$
\begin{aligned}
& \sqrt{6}+\sqrt{54} \\
& \sqrt{6}+\sqrt{9 \cdot 6} \\
& \sqrt{6}+3 \sqrt{6} \\
& 4 \sqrt{6}
\end{aligned}
$$

3) $\sqrt{12}+\sqrt{3}$

$$
\begin{array}{r}
\sqrt{4.3}+\sqrt{3} \\
2 \sqrt{3}+\sqrt{3} \\
3 \sqrt{3}
\end{array}
$$

2)

$$
\begin{aligned}
& \sqrt{3}+\sqrt{12} \\
& \sqrt{3}+\sqrt{4 \cdot 3} \\
& \sqrt{3}+2 \sqrt{3} \\
& 3 \sqrt{3}
\end{aligned}
$$

4) $\sqrt{6}+\sqrt{6}$

$$
2 \sqrt{6}
$$

5) $-3 \sqrt{27}-2 \sqrt{27}$
$-5 \sqrt{27}$
$-5 \sqrt{9 \cdot 3}$

$$
-5 \cdot 3 \sqrt{3}
$$

$$
-15 \sqrt{3}
$$

7) $-2 \sqrt{5}-2 \sqrt{45}$

$$
\begin{aligned}
& -2 \sqrt{5}-2 \sqrt{9 \cdot 5} \\
& -2 \sqrt{5}-2 \cdot 3 \sqrt{5} \\
& -2 \sqrt{5}-6 \sqrt{5}
\end{aligned}
$$

$-8 \sqrt{5}$

$$
\text { 6) } \begin{aligned}
& 2 \sqrt{3}+3 \sqrt{12} \\
& 2 \sqrt{3}+3 \sqrt{4 \cdot 3} \\
& 2 \sqrt{3}+3 \cdot 2 \sqrt{3} \\
& 2 \sqrt{3}+6 \sqrt{3} \\
& 8 \sqrt{3}
\end{aligned}
$$

8) $-2 \sqrt{27}+2 \sqrt{3}$

$$
\begin{array}{r}
-2 \sqrt{9 \cdot 3}+2 \sqrt{3} \\
-23 \sqrt{3}+2 \sqrt{3} \\
-6 \sqrt{3}+2 \sqrt{3} \\
-4 \sqrt{3}
\end{array}
$$

$$
\begin{aligned}
& \text { 9) }-2 \sqrt{2}+2 \sqrt{27}-3 \sqrt{2} \\
& -5 \sqrt{2}+2 \sqrt{27} \\
& -5 \sqrt{2}+2 \sqrt{9 \cdot 3} \\
& -5 \sqrt{2}+2 \cdot 3 \sqrt{3} \\
& -5 \sqrt{2}+6 \sqrt{3}
\end{aligned}
$$

11) $\sqrt{6} \cdot \sqrt{10}$

$$
\begin{aligned}
& \sqrt{6 \cdot 10} \\
& \sqrt{2 \cdot 3 \cdot 2 \cdot 5} \\
& 2 \sqrt{3 \cdot 5} \\
& 2 \sqrt{15}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10) } 3 \sqrt{45}-3 \sqrt{12}-\sqrt{27} \\
& 3 \sqrt{9 \cdot 5}-3 \sqrt{4 \cdot 3}-\sqrt{9 \cdot 3} \\
& 3.3 \sqrt{5}-3 \cdot 2 \sqrt{3}-3 \sqrt{3} \\
& 9 \sqrt{5}-6 \sqrt{3}-3 \sqrt{3} \\
& 9 \sqrt{5}-9 \sqrt{3}
\end{aligned}
$$

12) $\sqrt{2} \cdot \sqrt{3}$

13) $2 \sqrt{5} \cdot-2 \sqrt{5}$

$$
-4 \sqrt{5.5}
$$

-4.5
$-20)$
15) $\sqrt{5 x} \cdot \sqrt{20 x^{2}}$

$$
\sqrt{5 \cdot x \cdot 5 \cdot 4 \cdot x^{2}}
$$

$5 \cdot 2 \cdot x \sqrt{x}$

$$
10 x \sqrt{x}
$$

14) $3 \sqrt{6} \cdot 2 \sqrt{15}$

$$
\begin{aligned}
& 6 \sqrt{6 \cdot 15} \\
& 6 \sqrt{3 \cdot 2 \cdot 5 \cdot 3} \\
& 6 \cdot 3 \sqrt{2 \cdot 5} \\
& 18 \sqrt{10}
\end{aligned}
$$

16) $\sqrt{15 b} \cdot \sqrt{15 b}$

$$
\begin{aligned}
& \sqrt{15 b \cdot 15 b} \\
& =15 b
\end{aligned}
$$

$$
\begin{aligned}
& \text { 17) }-3 \sqrt{10 v^{3}} \cdot 4 \sqrt{5 v^{2}} \\
& -12 \sqrt{10 v^{3} \cdot 5 v^{2}} \\
& -12 \sqrt{5 \cdot 2 \cdot v \cdot v^{2} \cdot 5 \cdot v^{2}} \\
& -12 \cdot 5 \cdot v^{2} \sqrt{2 v} \\
& -60 v^{2} \sqrt{2 v}
\end{aligned}
$$

18) $-\sqrt{2 m^{3}} \cdot-5 \sqrt{8 m}$

$$
\begin{aligned}
& 5 \sqrt{2 \cdot m^{3} \cdot 8 \cdot m} \\
& 5 \sqrt{2 \cdot m \cdot m^{2} \cdot 2 \cdot 4 \cdot m}
\end{aligned}
$$

Quiz \#3

Radical Expressions

Rational vs Irrational Numbers

A rational number is a number that can be expressed as a fraction or ratio. The numerator and the denominator of the fraction are both integers.

When the fraction is divided out, it becomes a terminating or repeating decimal. (The repeating decimal portion may be one number or a billion numbers.)

$\int 6$ or $\frac{6}{1}$	can also be written as	6.0	*Be careful when using your calculator to determine if a decimal number is irrational. The calculator may not be displaying enough digits to show you the repeating decimals, as was seen in the last example to the left.
-2 or $\frac{-2}{1}$	can also be written as	-2.0	
$\int \frac{1}{2}$	can also be written as	0.5	
($\frac{-5}{4}$	can also be written as	-1.25	
$\int \frac{2}{3}$	can also be written as	$\begin{gathered} 0.66666666 \ldots \\ 0 . \overline{6} \end{gathered}$	
$\left\{\frac{21}{55}\right.$	can also be written as	$\begin{gathered} 0.38181818 \ldots . . \\ 0.3 \overline{18} \end{gathered}$	
	can also be written as	$0.62855421687 \ldots$ the decimals will repeat after 41 digits	

An irrational number cannot be expressed as a fraction. Irrational numbers cannot be represented as terminating or repeating decimals.

$$
\begin{gathered}
\pi=3.141592654 \ldots . \\
\sqrt{2}=1.414213562 \ldots .
\end{gathered}
$$

Name three numbers that are rational and three numbers that are irrational. $\neq \frac{1}{1}=x$
Rational: $\frac{37}{\pi}, \frac{-7000}{\sqrt{2}}, \frac{5=\frac{1}{2}}{-4 \pi}, \frac{1}{3}=\frac{\overline{3}}{},-3 \sqrt{2}$

REAL \mathbb{R} Imaginary \#'s

1. Sort the numbers into 2 groups, rational or irrational. Write the numbers in the appropriate bubble.

2. Graph and label each number on the number line below. You may label the number with the letter.

A 0.75
B $\sqrt{3}$
C $\sqrt{9}$
D $-2 \frac{1}{2}$
E $-\frac{15}{10}$

F $\quad 2 . \overline{6}$
G $-\sqrt{2}$
H π

0.25		1.76	$\frac{1}{5}$	$\sqrt{-36}$	$\frac{5}{8}$	2.75			
	$2 \frac{5}{6}$	0.125	$\frac{8}{0}$	$\sqrt{17}$	$\sqrt{-4}$	$\frac{9}{11}$	0.45		$8 \frac{1}{7}$
$0 . \overline{3}$	5.9	$\sqrt{-83}$	$.23924 \ldots$	$\sqrt{6}$	$\sqrt{56}$	$\frac{15}{0}$	$\frac{1}{3}$	$0 . \overline{6}$	$4 . \overline{13}$
$\frac{3}{4}$	$\frac{25}{0}$	$\sqrt{84}$	$8 \frac{5}{12}$	$.78321 \ldots$	$7 . \overline{81}$	$\sqrt{21}$	$\sqrt{-49}$	$\sqrt{-23}$	$\frac{3}{0}$
$0 . \overline{9}$	$5 \frac{3}{7}$	$.3295 \ldots$	$.9857 \ldots$	$\sqrt{41}$	$\sqrt{37}$	$.4837 \ldots$	$\sqrt{26}$	$\sqrt{50}$	$\sqrt{67}$
$\sqrt{9}$	28	$\sqrt{145}$	$9 . \overline{5}$	$\sqrt{5}$	127	$\sqrt{3}$	$\frac{5}{0}$	$\sqrt{-16}$	$\sqrt{-25}$
$\frac{12}{3}$	-6	$.93823 \ldots$	$\sqrt{15}$	$\sqrt{101}$	$\sqrt{16}$	$.3825 \ldots$	$\sqrt{-100}$	$\frac{9}{0}$	$\frac{1}{0}$

HW \#8 Rational vs Irrational Numbers

