Warmup:
Graph the following quadratic equation:

$$
\begin{gathered}
y=x^{2}+4 x+3 \\
y=(x+3 \quad(x+1) \\
x=-3 \quad x=-1
\end{gathered}
$$

x	y
-4	3
-3	0
-2	-1
-1	0
0	3

$$
\begin{aligned}
& y=x^{2}+4 x+3 \\
& y-3=x^{2}+4 x+4 \\
& +4 \\
& y+1=(x+2)^{2} \\
& y=(x+2)^{2}-1
\end{aligned}
$$

$$
\frac{-4}{2(1)}=\frac{-4}{2}=\frac{-2}{5}
$$

HW \#9:

Graphing Quadratic Equations Answer Key

Sketch the graph of each function.

1) $y=x^{2}-2 x+5$

$y-5=x^{2}-2 x+1$
$y-4=(x-1)^{2}$
$y=(x-1)^{2}+4$ vertex: $(1,4)$

x	y
-1	8
0	5
1	4
2	5
3	8

2) $y=x^{2}+4 x+8$

$$
\begin{aligned}
& y-8=x^{2}+4 x+4 \\
& +4
\end{aligned}
$$

$$
y-4=(x+2)^{2}
$$

$$
y=(x+2)^{2}+4
$$

$$
\text { vertex: }(-2,4)
$$

$$
\begin{array}{c|c}
x & y \\
\hline-4 & 8 \\
-3 & 5 \\
\hline-2 & 4 \\
\hline-1 & 5 \\
0 & 8
\end{array}
$$

$y=x^{2}+4 x+3 \quad$ Domain: $(-\infty, \infty)$ Range: $[-1, \infty)$
$\uparrow \quad \lambda$ dint: $[-3,-1] \quad \mathrm{y}$-int: 3 or $[0,3]$
$y=-x^{2}+4 x-3 \quad \checkmark$ Domain: $(-\infty, \infty)$ Range: $(-\infty, 1]$
$\sqrt{ }$ x-int: $\{1,3\} \quad \sqrt{ }$ y-int: -3
\downarrow Maximum: $1 \quad J_{\text {Minimum: }}$ N/A
\checkmark Intervals of Increase: $(-\infty, 2)$
\checkmark Intervals of Decrease: $(2, \infty)$
\checkmark Positive Intervals: $(1,3)$
${ }^{\text {Negative Intervals: }}(-\infty, 1) \frac{1}{y}$

$$
(3, \infty)
$$

End Behavior: as $x \rightarrow-\infty \quad y \rightarrow-\infty$

$$
\text { as } x \rightarrow \infty \quad y \rightarrow-\infty
$$

\checkmark Axis of Symmetry:
$x=2$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \max]$ or $[\min , \infty)$
Maximum:

y-coordinate of the vertex

Minimum:
Positive Intervals: ?
End Behavior:
$-\infty \quad$ As $x \rightarrow \infty \quad y \rightarrow$

Intervals of Increase:

($-\infty, x$-coordinate of $\min /$ max $)$
(x-coordinate of min/max, ∞) Intervals of Decrease:

Negative Intervals: ?
Axis of Symmetry:
$X=x$-coordinate of the vertex

D11 Graphing and Characteristics_3rd.GWB - 11/15 - Thu Mar 082018 13:43:50
shifted left 1

$$
y=x^{2}
$$

horizontal shift vertical shift reflection

shifted up 3

D11 Graphing and Characteristics_3rd.GWB - 12/15 - Tue Sep 292015 08:11:04

$$
y=1 x^{2}+4 x+3
$$

Rewrite the equation in vertex form

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=1(x+2)^{2}-\frac{1}{2}
\end{aligned}
$$

shifted left 2

$$
y=-x^{2}+4 x-3
$$

Rewrite the equation in vertex form

- When looking at vertex form, the h and k values determine the translation S of the quadratic.
- The value of h is the hriziontal translation and it is inside the parentheses.
-The value of k is the vertic al translation and it is outside of the parentheses.
- When graphing, think inside is oposite of the sign and outside is the Same as the sign.

Assignment: HW \#10:

Graphing Quadratics and Identifying Characteristics

Each quadratic is given to you in factored form today.
Find your vertex, make your table, graph your parabola.
Go to desmos.com
Identify all characteristics of your graph

Click on Launch Calculator
Type in your equation
Verify your graph is correct
Rewrite your equation in vertex form.
Identify the transformations of your graph
from the parent function.

