Warmup:

Identify the following characteristics of the graph below:

\square
Interval of Increase: \qquad
Interval of Decrease:

$$
(-\infty, 2)
$$

Axis of Symmetry: $\quad x=2$
Vertex: $(2,0)$
Max or Min? \qquad at 0
 x-intercept:

2
y-intercept:
4
Positive: $(-\infty, 2) \xi_{1}(2, \infty)$ Negative: N / A

Quiz \#9
E.Q.:

How do we write the equation of a quadratic function?

Recall our different forms:

Standard Form
$$
y=a x^{2}+b x+c
$$

Factored Form

$$
y=a\left(x-r_{1}\right)\left(x-r_{2}\right)
$$

Vertex Form

$$
y=a(x-h)^{2}+k
$$

Generally when asked to write an equation we will be given:
 - the vertex
 - another point on the graph.

For that reason, we will use vertex form to write an equation of a parabola.

We can always convert to other forms from there!!

$$
\begin{array}{ll}
y=m x+b & \text { line goes through } \\
y=3 x+b & \\
6=3(3)+b & (3, b)=\frac{\Delta y}{\Delta x}=\frac{6}{2}=\frac{3}{2} \\
b=9+b & \\
-9=-9 & \\
-3=b &
\end{array}
$$

$$
\begin{aligned}
& \text { Vertex Form } \\
& y=a(x-h)^{2}+k
\end{aligned}
$$

In order to write the equation we must:

- plug in the vertex (h and k)
- plug in the coordinates of the other point
- solve for a
- write the equation

Example:
Vertex Form

$$
y=a(x-h)^{2}+k
$$

Write the equation of the quadratic that has $x \times$ y vertex a $(3,4)$ and passes through the point $(6,-4)$

$$
\begin{aligned}
& y=a(x-3)^{2}+4 \star \\
& -4=a(6-3)^{2}+4 \\
& -4=a(3)^{2}+4 \\
& -4=9 a+4 \quad-\frac{8}{9}=\frac{9 a}{9} \\
& -4 \\
& y=-\frac{8}{9}(x-3)^{2}+4
\end{aligned}
$$

D12 Writing Equations_1st.GWB - 9/15 - Thu Oct 012015 09:04:09

Write the equation of the quadratic function that this table represents:

Vertex Form

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x--1)^{2}+10 \\
& y=a(x+1)^{2}+10 \\
& 13=a(0+1)^{2}+10 \\
& \text { solve for " } a \text { " } \\
& 13=a(1)^{2}+10 \\
& \underset{-10}{13}=1 a+\begin{array}{r}
10 \\
-10
\end{array} \\
& 3=1 a \\
& a=3 \\
& y=3(x+1)^{2}+10
\end{aligned}
$$

x	y
-3	22
-2	13
-1	10
0	13
1	22

D12 Writing Equations_1st.GWB - 10/15 - Thu Oct 01 2015 08:57:04

Write the equation of the quadratic function
vertex $(2,4)$ shown in the graph:

Vertex Form

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=a(x-2)^{2}+4 \\
& 0=a(0-2)^{2}+4 \\
& 0=a(-2)^{2}+4 \\
& 0=4 a+4 \\
& -4 \quad-\frac{4}{4}=\frac{4 a}{4} \quad a=-1
\end{aligned}
$$

Write the equation of the quadratic function in standard form:
In order to convert from vertex form to standard form we must:

- square our binomial
- distribute our leading coefficient
- combine our like terms

$$
\begin{aligned}
& (x-2)(x-2) \\
& x^{2}-2 x-2 x+4 \\
& \left(x^{2}-4 x+4\right)
\end{aligned}
$$

$$
\begin{aligned}
& y=2(\underbrace{(x-2)^{2}}+3 \\
& y=2\left(x^{2}-4 x+4\right)+3 \\
& y=2 x^{2}-8 x+8+3 \\
& y=2 x^{2}-8 x+11
\end{aligned}
$$

Write the equation of the quadratic $\quad(y-2)(x-2)=x^{2}-4 x+4$

 function instandard form:

$$
\begin{aligned}
& y=-3(x-2)^{2}-2 \\
& y=-3\left(x^{2}-4 x+4\right)-2 \\
& y=-3 x^{2}+12 x-12-2 \\
& y=-3 x^{2}+12 x-14
\end{aligned}
$$

Convert the equation from standard form to vertex form

Vertex Form
We've already learned how to do this!!

$$
y=\underline{a}(x-h)^{2}+k
$$

$$
y=3(x+4)^{2}-4
$$

Anyone remember what process we need to do?

$$
y=3 x^{2}+24 x+44
$$

completing the

- or -
square

$$
\begin{aligned}
& y=3(-4)^{2}+24(-4)+44 \\
& y=-4 \quad{ }^{\prime \prime}
\end{aligned}
$$

You try: Convert to vertex form

$$
y=-2 x^{2}+12 x+7
$$

HW \#11

Writing equations

