Identify the following characteristics of the graph below:

D: $(-\infty, \infty)$ \qquad

Interval of increase: $\quad(2, \infty)$
Interval of Decrease: $\quad(-\infty, \lambda)$
Axis of Symmetry: $\quad x=2$
Vertex: $(2,0)$
Max or Min? Min at O
End Behavior: As $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow \underline{\infty}$ As $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow \infty$ x-intercept: $2 \quad y$-intercept: 4

Positive: Negative: N/A

$$
(-\infty, 2) \dot{\zeta}(2, \infty)
$$

Quiz \#9
E.Q.:

How do we write the equation of a quadratic function?

Recall our different forms:

Standard Form
$$
y=a x^{2}+b x+c
$$

Factored Form

$$
y=a\left(x-r_{1}\right)\left(x-r_{2}\right)
$$

Vertex Form

$$
y=a(x-h)^{2}+k
$$

Generally when asked to write an equation we will be given:
 - the vertex
 - another point on the graph.

For that reason, we will use vertex form to write an equation of a parabola.

We can always convert to other forms from there!!

$$
\begin{aligned}
& y=m x+b \\
& \text { line goes through } \\
& y=4 x+b \\
& \text { pts } \quad(3,6):(5,14) \\
& b=4(3)+b \\
& \text { slope }=m=\frac{14-6}{5-3}=\frac{4}{5} \\
& \begin{aligned}
& b=12+b \\
&-12
\end{aligned} \\
& b=-6
\end{aligned}
$$

Vertex Form

$$
y=a(x-h)^{2}+k
$$

In order to write the equation we must:

- plug in the vertex (h and k)
- plug in the coordinates of the other point
- solve for a
- write the equation

Example:
Vertex Form

$$
y=\underset{\hat{\imath}}{a}(x-\underline{h})^{2}+\underline{k}
$$

Write the equation of the quadratic that has a $\quad y=-\frac{8}{9}(x-3)^{2}+y$ vertex at $(3,4)$ and passes through the point $(6,-4)$

$$
\begin{aligned}
& y=a(x-3)^{2}+4 \\
& -4=a(b-3)^{2}+4 \\
& -4=a(3)^{2}+4 \\
& -4=9 a+4 \\
& -4=-4 \\
& -\frac{8}{9}=\frac{9 a}{9} \quad a=\frac{-8}{9}
\end{aligned}
$$

D12 Writing Equations_3rd.GWB - 10/16 - Thu Oct 012015 09:04:09
Write the equation of the quadratic function that this table represents:

Vertex Form

$$
\begin{gathered}
y=a(x-h)^{2}+k \\
y=a(x+1)^{2}+10 \\
13=a(-2+1)^{2}+10 \\
13=a(-1)^{2}+10 \\
13=1 a+10 \\
-10 \\
-10 \\
a=3
\end{gathered}
$$

Write the equation of the quadratic function shown in the graph:

Vertex Form

$$
y=a(x-h)^{2}+k
$$

$$
y=a(x-2)^{2}+4
$$

$$
0=a(0-2)^{2}+4
$$

$$
0=a(-2)^{2}+4
$$

$$
0=4 a+4
$$

$$
-4=4 a
$$

$$
a=-1
$$

$$
\begin{aligned}
& y=-1(x-2)^{2}+4 \\
& \text {-or } y=-(x-2)^{2}+4
\end{aligned}
$$

Write the equation of the quadratic function

 in standard form:In order to convert from vertex form to standard form we must:
D. square our binomial
(2) distribute our leading coefficient combine our like terms

$$
(x-2)^{2}
$$

$$
\frac{(x-2(x-2)}{x^{2}-2 x-2 x+4}
$$

$$
\begin{aligned}
& y=2(x-2)^{2}+3 \\
& y=2\left(x^{2}-4 x+4\right)+3 \\
& y=2 x^{2}-8 x+8+3 \\
& y=2 x^{2}-8 x+11
\end{aligned}
$$

$$
x^{2}-4 x+4
$$

Write the equation of the quadratic function in
standard form:

$$
\begin{aligned}
y & =-3(x-2)^{2}-2 \\
y & =-3 x^{2}+12 x-14 \\
y & =-3 x^{2}-12 x-24 \\
y & =-3 x^{2}-12 x+10 \\
y & =-6 x^{2}-12 x
\end{aligned}
$$

$$
\begin{aligned}
& -3\left(x^{2}-4 x+4\right)-2 \\
& -3 x^{2}+12 x-12-2
\end{aligned}
$$

Convert the equation from standard form to vertex form

Vertex Form

We've already learned how to do this!!

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& y=3(x+4)^{2}-4
\end{aligned}
$$

Anyone remember what process we need to do?

$$
y=3 x^{2}+24 x+44
$$

complete the square

$$
\begin{aligned}
& \text { or } \begin{aligned}
\frac{-b}{2 a} & =x-c o o r . \text {.f vertex } \\
x \rightarrow 00 r: & \frac{-24}{2(3)}=\frac{-24}{6}=(-4) \\
y & =3(-4)^{2}+24(-4)+44 \\
y & =-\frac{y}{4}
\end{aligned}
\end{aligned}
$$

You try: Convert to vertex form

$$
\begin{gathered}
y=-2 x^{2}+12 x+7 \\
\frac{-12}{2(-2)}=\frac{-12}{-4}=3=h \quad y=-2(3)^{2}+12(3)+7 \\
y=25=k \\
y=-2(x-3)^{2}+25
\end{gathered}
$$

HW \#11

Writing equations

