Warmup:
Identify all of the key features of of this graph below

increasing $\int(-3,-1)$ ह! $(2,5)$
decreasing ${ }^{\prime}(-5,-3)$
positive $[-5,-4.5)$ غ $(2.5,5]$
negative $(-4,5,2.5)$
maximum $\sqrt{\sqrt{2} b s=5}$ rel: $31=$
minimum $a b s=-3 \quad \mathrm{rel}: N / \mathrm{A}$
avg. rate of change from
$x=-5$ to $x=\underline{2}$

37 $(-27$

HW \#10 Answer Key

Identify all of the key characteristics of each of the graphs below.
\#1)

Distance from home in meters

Domain: $[0,120]$	Range: $[0,160] \quad$-int: $(0,0)$	positive: $(0,120)$
increasing: $(0,50)(70,100)$	decreasing: $(50,70)$	$0)$

rel abs minimums: of 40
a^{2} rel average rate of change from $x=10$ to $x=70$ $\frac{20}{60}=\frac{1}{3}$

Domain:[1989, 1998] Range: $[05,1.4] \quad$ x-int: N(A \quad-int: $(0,5)$
increasing: 1989 (984') (1995,1998) decreasing: $(1994,1995)$ positive: $(1999,1998)$ negative: N/4
maximums: \quad minimums:
avg. rate of change from $x=1991$ to $x=1995$

$$
\frac{1.2}{r^{21}} \& \frac{1.4}{a b s}
$$

$$
\begin{gathered}
\text { is } \\
\downarrow \\
\text { abs } \\
\text { rel }
\end{gathered}
$$

$$
\frac{.2}{4}=.05
$$

\#3)

Domain: $[0,1.5]$
increasing: $(0,1.5)$
maximums: 15

Range: $[0,15]$ decreasing:
\#4)

Domain: $(-\infty, \infty)$ increasing: $(-\infty, 3)$ maximums:

40

Range: $(-\infty, 40]$
decreasing: $(3, \infty)$
minimums:
N / \mathbf{A}

$$
\text { x-int: }(-, 2,0)^{\frac{1}{!}(5,5,0)} y_{y \text {-int: }}(0,5)
$$

$$
\text { positive }(-0,5.5) \text { negative: }(-\infty,-.2)(5.5, \infty)
$$ average rate of change from $x=1$ to $x=5$

$$
\frac{-10}{4}=-2.5
$$

E.Q.:
 Why are sequences functions?

How do I write recursive and explicit formulas for arithmetic sequences?

ARITHMETIC SEQUENCES
Find the next two terms of each sequence and then describe the pattern.

$$
\begin{aligned}
& 1,3,5,7,9, \frac{11}{}, \frac{13}{2} \\
& 2,7,12,17,22,27,32 \\
& -416,-323,-230,-137,-24,-49 \\
& -2,-5,-8,-11,-14,-17
\end{aligned}
$$

Description: adding 2 to the previous term

Description: adding 5 to the previous term Description: adding 93 to the previous term Description: adding -3 to the previous term subtracting 3

Recursively.

All of the previous patterns are called arithmetic sequences. Hopefully you noticed something about their pattern that makes them similar. Complete the sentence below by writing a description of the pattern you noticed above.

Arithmetic sequences are sequences of numbers where we add a constant value to the previous term to continue the sequence.

Let's look more closely at the first pattern $1,3,5,7,9 \ldots$ Suppose the domain is the position of a term ($1,2,3,4$, etc.) and the range is the term (1, 3, 5, 7, 9, etc.).

Make a graph of the points that are made (position, term) with the pattern.
What quadrants) are these points in? Why?

What kind of graph do you have?
Linear

Write an equation for the graph. $4=2 x+-1$
How does this equation relate to the graph? How does this equation relate
 to the pattern?

Do you think the graphs of other arithmetic sequences would look similar? YS Why or why not?

why not?
Constant rate of change.
$-1,-3,-5,-7$

Find the three terms in the sequence after the last one given.

$$
\begin{aligned}
& 18-25=-7 \\
& 25-32=-7
\end{aligned}
$$

1) $24,21,18,15, \ldots 12,9,6$

$$
21-24=--3)
$$

2) $32,25,18,11, \ldots 4,-3,-10$ subtract 3
$|8-2|=-3$
or adding -3
3) $-31,-37,-43,-49, \ldots-55,-61,-67$
4) $18,-182,-382,-582, \ldots$
add - 6

$$
\begin{aligned}
& -782,-982,-1182 \\
& \text { add }-200 \\
& -182-18-200
\end{aligned}
$$

An arithmetic sequence is a sequence where the "difference between" consecutive terms is constant. (Linear)

$$
y=m x+b
$$

Identifying Arithmetic Sequences

Is the sequence arithmetic?
How do you know?
$3,6,9,12,15, \ldots$

adding 3"

> Geometric
> $2,4,8,16,32, \ldots$
> No
> "Multiplying by 2 "

Writing and Using Formulas for Arithmetic Sequences

Given the arithmetic sequence $-3,-1,1,3, \cdots \quad \frac{-5}{3}\{-3,-1,1,3$
a）write a recursive formul⿳亠二口阝 for the sequence．

$$
\left\{\begin{array}{l}
a_{1}=-3^{3 n_{1}} \\
a_{n}=a_{n-1}+2
\end{array}\right.
$$

b）write an explicit formula
for the sequence
$a_{n}=d_{n}+a_{0}$
$a_{n}=2 n+-5$ or $2 n-5$
c）what is the 56 th term of the sequence？

$f(x)=2 x-5$
$f(56)$

Given the arithmetic sequence $10,5,0,-5, \ldots$
a）write a recursive formula for the sequence．
b）write an explicit formula for the sequence
c）what is the 20th term of the sequence？

What are the second and third terms of the sequence

 100, \qquad , , $82, \ldots$?
Using Arithmetic Sequences to Solve Problems

Over the last ten years, the amount of snow a town received formed an arithmetic sequence. If 21 inches of snow fell 10 years ago and 19 inches fell 9 years ago, how many inches fell 2 years ago?
Explain.

Practice with Sequences

HW \#11

Arithmetic Sequences

