Warmup:
Given the following sequence: $\frac{8}{a_{1}}, 15,22,29,36, \frac{43}{2}, \ldots$

1) Determine if it is an arithmetic sequence Yes; adding
2) Write a recursive formula to represent the sequence
3) Write an explicit formula to represent the sequence
4) Find the 50 th term of the sequence
5)

$$
\left\{\begin{array}{l}
\text { 4) Find the 50th term of the sequence } \\
a_{1}=8 \\
a_{n}=a_{n-1}+7 \quad \begin{array}{rl}
a_{n} & =\frac{7 n+1}{0 r} \\
a_{n} & =7(n-1)+8 \\
a_{n} & =\frac{7 n-7+8}{7 n+1}
\end{array} \\
a_{50}=7(50)+1 \\
a_{50}=351
\end{array} \quad \begin{array}{rl}
a_{50} & =7(50-1)+8 \\
a_{50} & =7(49)+8 \\
& =343+8 \\
& =351
\end{array}\right.
$$

E.Q.:
 Why are sequences functions?

How do I write recursive and explicit formulas for arithmetic sequences?

How do we solve equations for a variable (Literal equations)?

An arithmetic sequence is a sequence where the difference between consecutive terms is constant.

The difference between consecutive terms of an arithmetic sequence is called the common difference.

Writing Arithmetic Sequences

Recursive Formula

$$
\left\{\begin{array}{l}
a_{1}=\text { first term } \\
a_{n}=a_{n-1}+d
\end{array}\right.
$$

Explicit Formula

$$
\begin{aligned}
& a_{n}=d n+a_{0} \\
& a_{n}=d(n-1)+a_{1}
\end{aligned}
$$

Writing and Using Formulas for
Arithmetic Sequences

Given the arithmetic
sequence $-3_{2},-1,1,3, \ldots$
a) write a recursive formula $\frac{-5}{f_{0}}\left\{\begin{array}{llll}-3, & -1 & 1 \\ a_{1} & a_{2} & a_{3}\end{array}\right.$ for the sequence. $\left\{\begin{array}{l}a_{1}=-3 \\ a_{n}=a_{n-1}+2\end{array}\right.$
b) write an explicit formula for the sequence $\quad a_{n}=d n+a_{0}$

$$
a_{n}=2 n+-5
$$

c) what is the 56 th term of the sequence?

$$
\begin{aligned}
& a_{56}=2(56)+-5 \\
& a_{56}=107
\end{aligned}
$$

Given the arithmetic sequence 10, $5,0,-5, \ldots$
a) write a recursive formula for the sequence.

$$
\left\{\begin{array}{l}
a_{1}=10 \\
a_{n}=a_{n-1}+5
\end{array}\right.
$$

b) write an explicit formula
for the sequence

$$
\rightarrow a_{n}=-5 n+15
$$

$$
\text { or } a_{n}=-5(n-1)+10
$$

c) what is the 20 th term of the sequence?

$$
\begin{aligned}
& a_{20}=-5(20)+15 \\
& a_{20}=-100+15=-85
\end{aligned}
$$

Writing and Using Formulas for Arithmetic Sequences

$$
a_{n-1}+-s
$$

Given the arithmetic sequence $20,15,10,5, \ldots$
a) write a recursive formula for the sequence.

$$
\left\{\begin{array}{l}
a_{1}=20 \\
a_{n}=a_{n-1}+-1-5
\end{array}\right.
$$

b) write an explicit formula for the sequence

$$
a_{n}=-5 n+25
$$

c) what is the 20th term of the sequence?

$$
\begin{aligned}
& a_{20}=-5(20)+25 \\
& a_{20}=-75
\end{aligned}
$$

d) -135 s which term in this sequence?

$$
\begin{aligned}
& a_{n}=-5 n+25 \\
& -135=-5 n+25 \\
& -160=-5 n \\
& \frac{32}{=}=n
\end{aligned}
$$

What are the second and third terms of the sequence

$$
100, \underbrace{94}_{-6}, \frac{88}{9}, 82, \ldots ? \quad d=\frac{100-82}{1-4}=\frac{18}{-3}=-6
$$

Given the following sequence: \qquad 4 $9(24,29, \ldots$

1) Find the common difference between terms $d=5$
2) Write an explicit formula for the sequence

$$
a_{n}=5 n+-1
$$

$$
\begin{gathered}
a_{n}=5 n+a_{0} \\
14=5(3)+a_{0} \\
14=15+a_{0} \\
-15-15
\end{gathered}
$$

3) Find the 20th term of the sequence
$a_{20}=5(20)+-1=99$

$$
\begin{aligned}
& 129=5 n+-1 \\
& +1 \\
& +1 \\
& 130=\frac{5 n}{5} \\
& 26=n
\end{aligned}
$$

$$
-1=a_{0}
$$

Given:
The 10 th term of an arithmetic sequence is 40 and the 14 th term is 28

1) Find the common difference between terms
2) Write an explicit formula for the sequence

$$
a_{n}=-3 n+70
$$

3) Find the 20th term of the sequence \qquad
4) 58 represents which term in the sequence?

$$
4
$$

$$
\begin{aligned}
& a_{n}=-3 n+a_{0} \\
& 40=-3(10)+a_{0} \\
& 40=-30+a_{0} \\
& +30+30
\end{aligned}
$$

$$
70=a_{0}
$$

Practice with Sequences

