Warmup:

Multiply each of the following using the FOIL method:

$$
\begin{aligned}
& (x+1)^{2}=x^{2}+2 x+1 \\
& (x-2)^{2}=x^{2}-4 x+4 \\
& (x+3)^{2}=x^{2}+6 x+9 \\
& (x-5)^{2}=x^{2}-10 x+25
\end{aligned}
$$

$$
\begin{aligned}
& (x+7)^{2} \\
& x^{2}+14 x+49
\end{aligned}
$$

$$
\begin{aligned}
& (\underbrace{(x-10 x}_{-10 x})^{2}=x^{2}-20 x+100 \\
& (x-15)(x-0) \\
& =x^{2}+12 x+36
\end{aligned}=(x+6)^{2} \quad \begin{aligned}
& x^{2} \pi^{16 x+64}=(x-8)^{2}
\end{aligned}
$$

E.Q.:

How do we solve quadratic equations using the completing the square method?

Completing the Square Method:

$$
\begin{aligned}
& \begin{aligned}
x^{2}+8 x+2 & =0 \\
-2 & -2
\end{aligned} \\
\frac{8}{2}=4 & x^{2}+8 x+\frac{16}{}
\end{aligned}=-2+16
$$

Solve by completing the square:

$$
\begin{aligned}
& \frac{x^{2}-4 x+10}{x^{2}-4 x-32}=\frac{42}{-42} \\
& x^{2}-4 x=\frac{0}{0} \\
& x^{2}-32 \\
& \sqrt{(x-2)^{2}}=\sqrt{36} \\
& x-2= \pm 6=32+4^{2} \\
&(-2)^{2}=44^{2}=2 \pm 6 \quad \begin{array}{l}
x=8 \\
x=-4
\end{array}
\end{aligned}
$$

To use completing the square to solve a quabratic $\left(a x^{2}+B x+C\right)$ you neep to ...

1. Move the constant (c) over to one side of the equation
2. Factor out the leading coefficient (if needed) of the ax^{2} and bx
3. Find the number that would make the trinomial a Trinomial Square $\quad\left(\frac{b}{2}\right)^{2}$
4. Add that number to the other side (whatever you do to one side of an equation you need to do to the other.

Olf the a leading coefficient had been factored out you need to multiply the number by what was factored out and add new number to the other side
5. Factor the trinomial square

Solve by completing the square:

$$
\begin{aligned}
&-10 \div 2=-5 \\
&(-5)^{2}=25 \quad v^{2}-10 v-28=0 \\
& \sqrt{(v-5)^{2}}=\sqrt{53} \\
& v-10 v+25^{*}=28+25 \\
&= \pm \sqrt{53} \\
& v=5 \pm \sqrt{53}
\end{aligned}
$$

You try:

$$
\begin{aligned}
& b^{2}+(20) b-44=0 \\
&(b+10)^{2}=44+100 \\
& b+10= \pm 12 \\
& b=-10 \pm 12 \\
& 2 \text { or }-22
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{2} \in(4) \\
& 4^{2}=16 \\
& \left\{\begin{array}{l}
r^{2}+8 r+84=0 \\
r^{2}+8 r+\underline{16}=-84+16 \\
\rightarrow(r+4)^{2}=(-84+16)
\end{array}\right. \\
& r+4=\sqrt{-68} \\
& r=-4 \pm 2 i \sqrt{17}
\end{aligned}
$$

$$
\begin{aligned}
b^{2}+4 b+45 & =9 \\
(b+2)^{2} & =-3 b+4 \\
(b+2)^{2} & =-32 \\
b+2 & = \pm \sqrt{-32} \\
b & =-2 \pm 4 i \sqrt{2}
\end{aligned}
$$

HW \#11:
 Solving Quadratic Equations Using Completing the Square

