According to the Fundamental Theorem of Algebra, how many roots does this function have?

$$
y=x^{3}+5 x^{2}-x-5
$$

What type of roots are there?

How many of each type of root would there be?

$$
\begin{aligned}
3 \text { total }- & \frac{0 \text { imaginary } \& 3 \text { real roots }}{1 \text { imaginary } \dot{2} \text { reatroots }} \\
& \begin{array}{ll}
2 \text { imaginary } & 1 \text { real roots } \\
\hline \text { imaginary } & 0 \text { reatrouts }
\end{array}
\end{aligned}
$$

The factored form of a polynomial function is

$$
\mathrm{y}=(\mathrm{x}+4)(\mathrm{x}-2)(\mathrm{x}-1)(\mathrm{x}+1) .
$$

$$
\begin{aligned}
& x+4=0 \\
& x-2=0 \\
& x-1=0 \\
& x+1=0
\end{aligned}
$$

According to the Fundamental Theorem of Algebra, what is the degree of this function?

4 factors
4 routs

$$
\text { Degree }=4
$$

What are the roots of this function?

$$
x=2 \quad x=1 \quad x=-4 \quad x=-1
$$

The following graph is of a polynomial function of degree 2. Are the solutions of this function real or imaginary?

∂r
or

HW \#1: Fundamental Theorem of Algebra Answer Key

State the possible number of real and imaginary zeros for each function.

1) $y=x^{5}+5 x^{4}-x^{3}-5 x^{2}-2 x-10$

Possible \# of real zeros: 5,3 , or 1
Possible \# of imaginary zeros: 4,2 , or 0
3) $y=x^{3}-5 x^{2}-x+5$

Possible \# of real zeros: 3 or 15
Possible \# of imaginary zeros: 2 or 0
2) $y=x^{4}-6 x^{2}-27$

Possible \# of real zeros: 4,2 ; or 0°
Possible \# of imaginary zeros: $\underset{\underline{4}, \underline{2} \text {, or } \underline{0}, ~(1)}{ }$
4) $y=x^{2}-x-6$

Possible \# of real zeros: 2 or 04
Possible \# of imaginary zeros: $\underline{2}$ or $\underline{0}$

Find all zeros.

5) $f(x)=(x+1)\left(x^{2}-x+1\right)$

$$
\left\{-1, \frac{1+i \sqrt{3}}{2}, \frac{1-i \sqrt{3}}{2}\right\}
$$

7) $f(x)=\left(x^{2}-5\right)\left(x^{2}+7\right)$

$$
\{\sqrt{5},-\sqrt{5}, i \sqrt{7},-i \sqrt{7}\}
$$

9) $f(x)=\left(x^{2}+4\right)\left(x^{2}+6\right)$

$$
\{2 i,-2 i, i \sqrt{6},-i \sqrt{6}\}
$$

6) $f(x)=\left(x^{2}+5\right)\left(x^{2}-7\right)$

$$
\left.\begin{array}{ll}
(i \sqrt{5},-i \sqrt{5}, \sqrt{7},-\sqrt{7}) & \sqrt{2}=\sqrt{-5} \\
x^{2}-7=0 \\
\sqrt{x^{2}}-\sqrt{7}
\end{array}\right\} \pi x= \pm \sqrt{-5}
$$

$$
x= \pm \sqrt{7}
$$

8) $f(x)=\left(x^{2}+8\right)\left(x^{2}+7\right)$

$$
\{2 i \sqrt{2},-2 i \sqrt{2}, i \sqrt{7},-i \sqrt{7}\}
$$

10) $f(x)=(x+4)\left(x^{2}-5\right)$
$\{-4, \sqrt{5},-\sqrt{5}\}$

Multiplicity
Sometimes a factor appears more than once. That is its Multiplicity.

Example: $x^{2}-6 x+9$

$$
x^{2}-6 x+9=(x-3)(x-3)
$$

" $(x-3)$ " appears twice, so the root " 3 " has Multiplicity of 2
degree 2

2 routs

The Multiplicities are included when we say "a polynomial of degree \mathbf{n} has \mathbf{n} roots".

Example: $x^{4}+x^{3}$
There should be 4 roots (and 4 factors), right?
Factoring is easy, just factor out x^{3} :

$$
\begin{gathered}
\text { G.C.F. } \\
x^{3}
\end{gathered}
$$

$$
(x+1
$$

$$
\rangle=0
$$

$x=0 \quad x=0 \quad x=0 \quad x+1=0$

$$
x=-1
$$

$$
2 \text { distinct roots: }-1 \leqslant 0^{M}
$$

$$
4 \text { roots: }-1,0,0,0
$$

$$
x^{4}+x^{3}=x^{3}(x+1)=x \cdot x \cdot x \cdot(x+1)
$$

there are 4 factors, with " x " appearing 3 times.
But there seem to be only 2 roots, at $\mathbf{x}=-\mathbf{1}$ and $\mathbf{x}=\mathbf{0}$:

But counting Multiplicities there are actually 4:

- " x " appears three times, so the root " 0 " has a Multiplicity of 3
- "x+1" appears once, so the root " -1 " has a Multiplicity of 1

$$
\text { Total }=3+1=4
$$

Guadratic

$$
\begin{gathered}
x=-4 \\
+y+4 \\
x+4=0 \\
x-3=0 \\
x=3
\end{gathered}
$$

write in factured form

$$
y=(x-3)(x+4)
$$

Write the equation in factored form given the following information:

$$
\begin{aligned}
& \text { degree is } 3 \\
& \text { Root of } 3 \text { has a multiplicity o } 2 \\
& y=(x+5)(x-3)^{2} \\
& \begin{array}{c}
x+3 / 3=0 \\
x=3
\end{array} \\
& \begin{array}{lll}
-3 & -3 & x=-5 \\
x-5 & +5
\end{array} \\
& x-3=0 \quad x+5=0
\end{aligned}
$$

Write the equation in factored form given the following information:

Write the equation in factored form given the following information:

```
zeros at -1 and 2
```

degree is 4

Root of -1 has a multiplicity of 3

Write the equation in factored form given the following information:
zeros at $7,-\frac{3}{7}$ and 8 degree is 3

$$
y=(x-7>(x+3)(x-8)
$$

Fundamental Theorem of Algebra

The "Fundamental Theorem of Algebra" is not the start of algebra or anything, but it does say something interesting about polynomials:

Any polynomial of degree \mathbf{n} has \mathbf{n} roots but we may need to use complex numbers

Summary

- A polynomial of degree \mathbf{n} has \mathbf{n} roots (where the polynomial is zero)
- A polynomial can be factored like: $\boldsymbol{a}\left(\boldsymbol{x}-\boldsymbol{r}_{\boldsymbol{1}}\right)\left(\boldsymbol{x}-\boldsymbol{r}_{\mathbf{2}}\right) \ldots$ where r_{1}, etc are the roots
- Roots may need to be Complex Numbers
- Complex Roots always come in pairs
- Sometimes a factor appears more than once. That is its Multiplicity.

What are the roots of the equation $5 x^{2}-5 x-30=0$?

$$
\begin{aligned}
& 5 x^{2}-5 x-30=0 \\
& 5 \cdot\left(x^{2}-x-6\right)=0 \\
& 5(x+2)(x-3)=0 \\
& \text { St } x=-2 x=3
\end{aligned}
$$

What are the roots of the equation $x^{2}-6 x+13=0$?

$$
\begin{aligned}
& a=1 \quad b=-6 \quad c=13 \\
& \frac{6 \pm \sqrt{(-6)^{2}-4(1)(13)}}{2(1)} \\
& \frac{6 \pm \sqrt{36-52}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6 \pm \sqrt{-16}}{2} \\
& \frac{6 \pm 4 i}{2} \\
& \frac{6}{2} \pm \frac{4}{2} i \\
& 3 \pm 2 i
\end{aligned}
$$

$$
\begin{aligned}
& 4=4 x+8 \quad \begin{array}{r}
4 x+8=0 \\
4 x \\
4
\end{array} \quad \begin{array}{r}
\frac{-8}{4}
\end{array} \\
& y=(x-3)(x-3) \\
& y=-2
\end{aligned}
$$

The above shows part of the graph of the function $y=-0.2(x+2)^{6}+(x+2)^{4}$.

$$
\begin{aligned}
\text { degree }^{2}= & =6 \\
\text { sots } & =6
\end{aligned}
$$

What is the multiplicity of the root at $\mathrm{x}=-2$?

What are the roots of the equation $3 x^{2}+5 x+4=0$?

The equation $\underline{x}^{5}-2 \underline{x}^{4}+2 \underline{x}^{3}=0$ has:
G.C.F.?

A Five distinct real roots

C ne distinct real root and two complex roots

B Three distinct real roots and two complex roots

D One distinct real root and four complex roots

$$
\begin{aligned}
& x^{5}-2 x^{4}+2 x^{3} \\
& x^{3}\left(x^{2}-2 x+2\right)=0 \\
& x \cdot x \cdot x\left(x^{2}-2 x+2\right) \\
& \left.x=0, x_{0}=0\right)(x=0)
\end{aligned}
$$

HW \#2:
 Finding Roots and Multiplicity

