Warmup:
[4]. $3=2 \sqrt{3}$
perfect squares
\Downarrow
1
$\sqrt{9}=3$

Simplify the following radicals:

Simplify the following radicals:
$\sqrt{-9} \quad \sqrt{-12} \quad \sqrt{-20}=$ No Solution
No real number solution
Imaginary \#'s

Can you solve this equation?

$$
\begin{aligned}
& x^{2}-9=0 \\
& x^{2}-9=0 \\
& (x+3)(x-3)=0 \\
& \begin{array}{ll}
x+3=0 & x-3=0 \\
-3 & x=3
\end{array} \\
& x=3 \text { or }-3 \\
& \square x=-3 \quad x=3 \\
& E \underline{a} \simeq \pm o_{-}
\end{aligned}
$$

How about this one?

$$
\begin{gathered}
x^{2}+9=0 \\
-9=-9 \\
\sqrt{x^{2}}=\sqrt{-9} \\
x=\sqrt{-9}
\end{gathered}
$$

MATHEMATICIAN : CARDAN

$\sqrt{-1}=\mathrm{i}$

MATHEMATICIAN : EULER

IMAGINARY NUMBER
$i^{2}=-1$
$1=\sqrt{-1}$
$i^{2}=-1$

Marcus du Sautoy,
Professor of Mathematics at Oxford

Definition:

The imaginary numbers consist of all numbers bi, where b is a real number and i is the imaginary unit, with the property that $i^{2}=-1$.

So, if $i^{2}=-1$, that means that $i=\sqrt{-1}$.

Now we can express the square roots of negative numbers using the imaginary unit i.

$$
\sqrt{2} \cdot \sqrt{3}=\sqrt{6}
$$

Example: Simplify $\sqrt{-5}$

$$
\sqrt{-5}=\sqrt{-1 \cdot 5}
$$

Example:

Simplify $\sqrt{-7}$

Example:
 Simplify $\sqrt{-99}=i \sqrt{99}$

Example: Simplify

$$
=i \sqrt{9 / 16}
$$

$$
\sqrt{\frac{9}{16}}=\frac{\sqrt{9}}{\sqrt{16}}=\frac{3}{4}
$$

(2)

You try: Simplify each of the following radicals using i.

Express these numbers in terms of i.

1. $\sqrt{-2}$
2. $-\sqrt{-9} i \sqrt{2}$
3. $-\sqrt{-9}$
4. $-\sqrt{-80}$
 $-4 i$
5.

4. $\sqrt{-25}$

4. $\sqrt{-25}$
7. $\sqrt{-128}$
8. $\sqrt{-12}$
$8 i \sqrt{2}$
10.

5)

$$
\begin{aligned}
& -1 \cdot \sqrt{-9} \\
& -1 \cdot i \sqrt{9} \\
& -1 \cdot i \cdot 3 \\
& -3 i
\end{aligned}
$$

Homework \#1: Imaginary Numbers

