Factor the following trinomials:

$$x^{2} + 11x + 10 \left(x^{2} - 7x - 30 \right) x^{2} = (x + 10)(x + 1) \left((x - 10)(x + 3) \right) (x - 16)$$

$$x^{2} - 19x + 48$$
 $(x-16)(x-3)$
 1.48
 2.24
 3.16
 4.12
 6.8

1)
$$n^2 + 14n + 40$$

 $(n+4)(n+10)$

2)
$$x^2 + 5x - 6$$

 $(x-1)(x+6)$

3)
$$\underline{n^2 + 8n + 15}$$

 $(n+5)(n+3)$

4)
$$\underline{m}^2 + 3m - 18$$
 $(m-3)(m+6)$

5)
$$\underline{m}^2 - 5m - 6$$
 $(m+1)(m-6)$

6)
$$v^2 - 3v - 54$$

 $(v+6)(v-9)$

7)
$$m^2 + 5m - 50$$

 $(m+10)(m-5)$

9)
$$v^2 - 6v - 16$$
 $(v - 8)(v + 2)$

11)
$$p^2 - 16p + 60$$

 $(p-6)(p-10)$

8)
$$p^2 + 11p + 18$$

 $(p+2)(p+9)$

10)
$$a^2 + 16a + 63$$

 $(a+9)(a+7)$

12)
$$m^2 + 4m + 4$$

$$\frac{(m+2)^2}{\text{perfect squares}}$$

13)
$$a^2 + 12a + 35$$

 $(a+5)(a+7)$

14)
$$m^2 + 14m + 48$$

 $(m+8)(m+6)$

15)
$$b^2 + 8b + 7$$
 $(b+1)(b+7)$

16)
$$r^2 - 3r - 4$$
 $(r+1)(r-4)$

E.Q.:

How do we factor quadratic expressions that are not trinomials with a leading coefficient of 1?

Yesterday you factored simple quadratic trinomials with a leading coefficient of 1

$$x^2 - 7x - 30 = (x - 10)(x + 3)$$

Today we will look at our special products, and trinomials with leading coefficient not equal to 1.

$$(x+3)^{2} = (x+3)(x+3) = x^{2} + 3x + 3x + 9$$

$$x^{2} + 6x + 9$$

$$(x+7)^{2} = x^{2} + 14x + 49$$

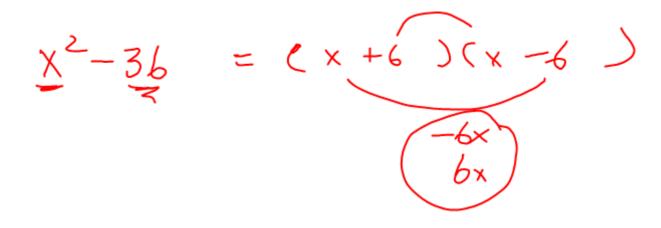
$$(x+7)(x+7)$$

$$(X + 10)^{2} = X^{2} + 20x + 100$$

$$(X - 5)^{2} = X^{2} - 10x + 25$$

$$X^{2} + 26x + 25 = (X + 25)(X + 1)$$

$$2.5x$$



$$\chi^{2}$$
 - 49 = (x+7)(x-7)

Special Products:

Perfect Squares

$$a^2 + 2ab + b^2$$

Difference of Squares

$$a^{2} - b^{2}$$

Note:

Each of these can still be factored using the x-factor technique if the leading coefficient is 1

$$a^2 + 2ab + b^2$$

When we multiply out a perfect square binomial, our product will always follow this pattern.

$$(x+2)^2 = (x+2)(x+2) = \underline{x^2 + 4x + 4}$$

$$(x-3)^2 = (x-3)(x-3) = x^2 - 6x + 9$$

$$(2x-4)^2 = (2x-4)(2x-4) = 4x^2 - 16x + 16$$

$$a^2 + 2ab + b^2$$

To factor a perfect square, we simply need to recognize this pattern.

$$\underline{x^2} + 10x + 25 = (x+5)^2$$

Is the 2nd term twice the product of those squares? $2.5.\times$

$$a^2 + 2ab + b^2$$

Example:

$$x^2 - 18x + 81 = (x - 9)^2$$

Is the 1st term a perfect square? Yes, x

Is the 3rd term a perfect square? Yes, -9

2.9·X Is the 2nd term twice the product of those squares? -18x

$$a^2 + 2ab + b^2$$

Example:

$$25x^2 + 20x + 4 = (5x + 2)^2$$

Is the 1st term a perfect square? $\frac{1}{2}$, $\frac{5}{2}$

Is the 3rd term a perfect square? Yes, 2

$$a^{2}-b^{2}$$

When we multiply out two binomials that represent a difference of squares, our product will always follow this pattern.

$$(x-2)(x+2) = x^2 - 2^2 = x^2 - 4$$

$$(x-11)(x+11) = x^2 - 11^2 = x^2 - 121$$

$$(3x-4)(3x+4) = (3x)^2 - 4^2 = 9x^2 - 16$$

$$a^2 - b^2$$

To factor a perfect square, we simply need to recognize this pattern.

Example:

$$x^2 - 100$$
 = (x+10)(x-10)

Is the 1st term a perfect square? X

Is the 2nd term a perfect square?

Are those terms being subtracted?

$$a^2 - b^2$$

Example:

$$\underline{x^2} - \underline{1} \quad (x+1)(x-1)$$

Is the 1st term a perfect square? X

Is the 2nd term a perfect square?

Are those terms being subtracted? Yes

$$a^2 - b^2$$

$$9x^{2}-100$$
 $(3x-10)(3x+10)$

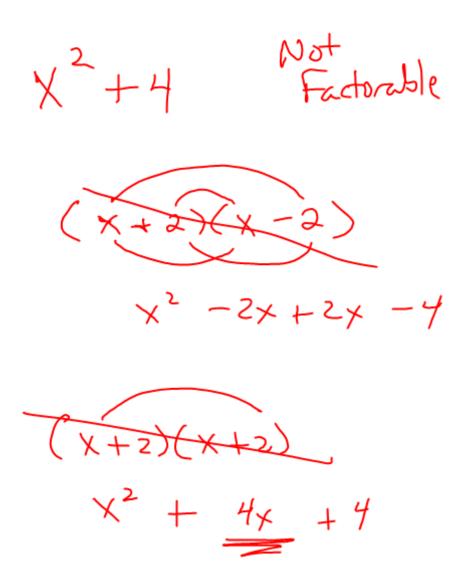
Example:

$$16x^2 - 25$$

Is the 1st term a perfect square?

Is the 2nd term a perfect square? 5

Are those terms being subtracted?



Sometimes, we can factor out the leading coefficient:

Examples:

Factor out the 2!

$$2x^2 - 10x - 12$$

Factor out the 3!

$$3x^{2} + 33x + 30$$

$$3(x^{2} + 11x + 10)$$

$$3(x+10)(x+1)$$

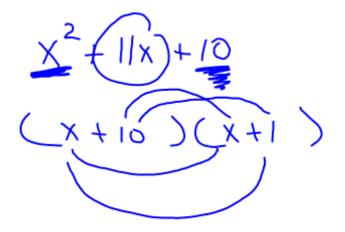
$$6x^{2} + 13x + 6$$

$$(2x + 3)(3x + 2) \left(6x + 3)(1x + 2)$$

$$(2x + 2)(3x + 3) \left(6x + 2)(1x + 3)$$

$$(2x + 1)(3x + 6) \left(6x + 1)(1x + 6)$$

$$(2x + 6)(3x + 1) (6x + 6)(1x + 1)$$



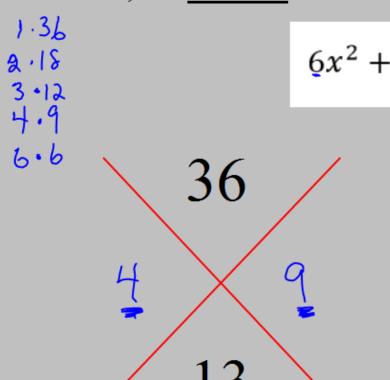
Sometimes, we **can not** factor out the leading coefficient:

$$6x^2 + 13x + 6$$

First, multiply the leading coefficient and the constant term

6 times
$$6 = 36$$

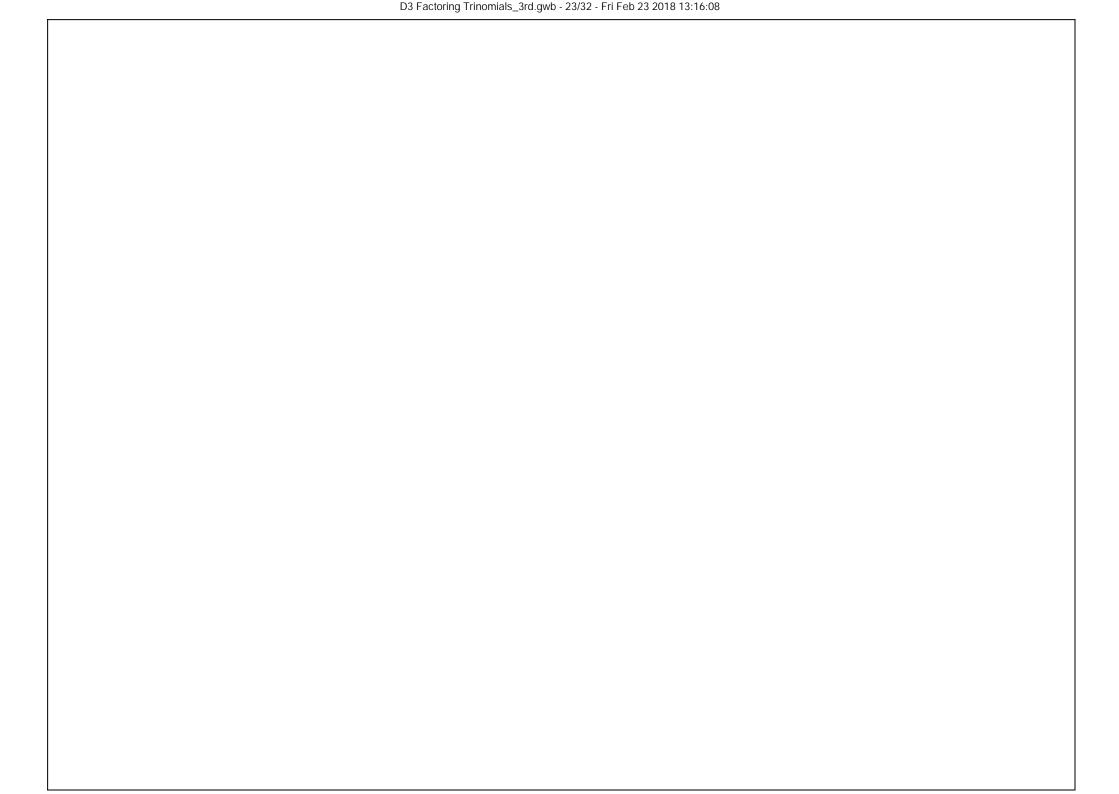
Sometimes, we **can not** factor out the leading coefficient:



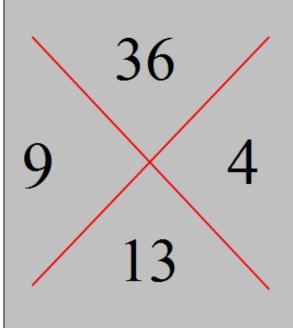
$$6x^2 + 13x + 6$$

Second, set up your x-factor with this product on the top

$$6x^{2} + 4x + 9x + 6$$
F 0 1 L



Sometimes, we can not factor out the leading coeff



$$6x^2 + 13x + 6$$

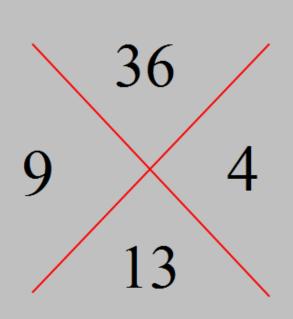
Third, rewrite the middle term using these two numbers

$$6x^{2} + 9x + 4x + 6$$

$$3x(3x + 3) + 2(3x + 3)$$

$$(2x + 3)(3x + 2)$$

Sometimes, we **can not** factor out the leading coefficient:

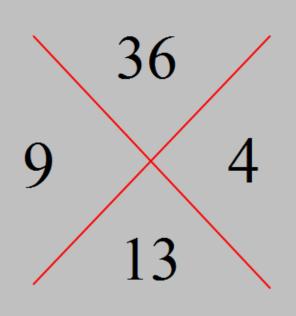


$$6x^2 + 13x + 6$$

Now we factor the first pair and the second pair separately

$$6x^2 + 9x + 4x + 6$$

Sometimes, we **can not** factor out the leading coefficient:



$$6x^2 + 13x + 6$$

$$6x^2 + 9x + 4x + 6$$

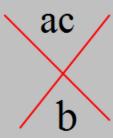
$$3x(2x + 3) + 2(2x + 3)$$

Finally, we write our factored form

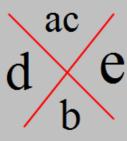
$$(3x + 2)(2x + 3)$$

$$ax^2 + bx + c$$

- 1. Multiply a and c ac
- 2. Set up the x-factor with ac on top and b on bottom



3. Find the two numbers that multiply to get ac and add to get b



4. Rewrite your middle term using these numbers

$$ax^2 + dx + ex + c$$

- 5. Factor the 1st two terms and the 2nd two terms separately
- 6. Write answer in factored form

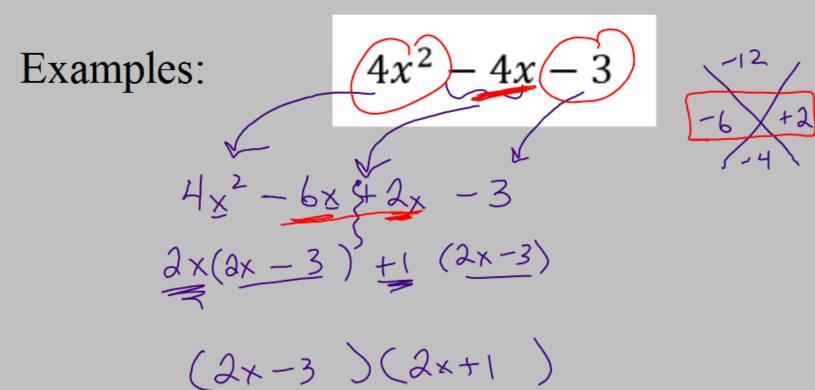
$$10x^2 + 33x - 7$$

$$10x^{2} - 2x \left\{ +35x - 7 \right\}$$

 $\frac{2x(5x - 1)}{+7(5x - 1)}$

$$|0 \times^{2} + 35 \times \{-2 \times -7 \}$$

 $5 \times (2 \times +7)$
 \uparrow



$$6x^2 + 11x - 10$$

$$6x^{2} + 15x - 4x - 10$$
 $3x (3x + 5)^{2} - 2(3x + 5)$

$$(3x + 5)(3x - 2)$$

$$40x^2 + x - 6$$

