Warmup:
Divide using synthetic division:

$$
\text { 3. }\left(x^{4}-5 x^{3}-11 x^{2}-17 x-36\right)=(x-7)
$$

$$
\text { 4. }\left(2 x^{3}-17 x^{2}-26 x-45\right) \div(x-10)
$$

$$
\begin{array}{rccc}
\text { (10) } 2 & -17 & -28 & -45 \\
1 & 20 & 30 & 40 \\
\hline 2 & 3 & , 4 & -57
\end{array}
$$

$$
/
$$

$$
2 x^{2}+3 x+4-\frac{5}{x-10}
$$

$$
\begin{aligned}
& \text { *) }\left(x^{3}-x^{2}-10 x-8\right) \div(x-4) \\
& \text { 2. }\left(x^{4}-2 x^{3}+x^{2}-x+2\right)(x-2) \\
& x^{2}+3 x+2 x=x^{2}+3 x+2=\begin{array}{lllll}
2 & -2 & 1 & -1 & 2 \\
\frac{1}{2} & 2 & 0 & 2 & 2 \\
31 & 0 & 1 & 1 & 3
\end{array}= \\
& \text { (4) } 1_{1}-4
\end{aligned}
$$

Remainder Theorem

Evaluate the following:

$f(x)=x^{4}-2 x^{3}+x^{2}-x+2$
when $\mathrm{x}=2$
$f(2)=2^{4}-2(2)^{3}+2^{2}-2+2=4$
$f(x): x^{4}-5 x^{3}-11 x^{2}-17 x-36 \quad$ when $x=7$
$f(7)=-8$
$f(x)=2 x^{3}-17 x^{2}-26 x-45 \quad$ when $x=10$
$f(10)=$

1. Consider the polynomial function $f(x)=3 x^{2}+8 x-4$.
a. Divide f by $\boldsymbol{x} \mathbf{- 2}$.
b. Find $f(2)$.

$$
f(x)=3 x^{2}+8 x-4
$$

$$
\div(x-2)
$$

$f(2)$

$$
\text { 2) } \begin{array}{rrr}
3 & 8 & -4 \\
& 6 & 28 \\
\hline 3 & 14 & 24
\end{array}
$$

$$
\begin{aligned}
& 3(2)^{2}+8(2)-4 \\
& 3 \cdot 4+16-4 \\
& 12+16-4 \\
& 28-4
\end{aligned}
$$

2. Consider the polynomial function $g(x)=x^{3}-3 x^{2}+6 x+8$.
a. Divide g by $x+1$.
b. Find $g(-1)$.

$$
x^{3}-3 x^{2}+6 x+8
$$

$$
\begin{aligned}
& x+1 \\
& \frac{-1}{} \frac{1}{1}-3 \\
& 1-4 \\
& -10 \\
& \hline-2
\end{aligned}
$$

$$
\begin{gather*}
(-1)^{3}-3(-1)^{2}+6(-1)+8 \\
-1-3(1)-6+8 \\
-1-3-6+8 \\
-10+8=
\end{gather*}
$$

3. Consider the polynomial function $h(x)=x^{3}+2 x-3$.
a. Divide h by $x-3$.
b. Find $\boldsymbol{h}(3)$.

Remainder theorem
$P(a)$ is the remainder when the function P is divided by

$$
x-a
$$

Evaluate or function at a given value, a, that value is equal to the remainder, when you divide by it's linear facts, $x-a$.

$$
\begin{aligned}
& f(x)=5 x^{4}+10 x^{2}-6 x+7 \\
& f(-4)=5(-4)^{4}+10(-4)^{2}-6(4)+7=1471 \\
& -4 \begin{array}{ccccc}
5 & 0 & 10 & -6 & 7 \\
\downarrow & -20 & 80 & -360 & 1464
\end{array}
\end{aligned}
$$

Use the Remainder Theorem to evaluate $f(x)=6 x^{3}-5 x^{2}+4 x-17$ at $x=3$.

$$
\begin{array}{cccc}
6 & -s & 4 & -17 \\
+ & 18 & 39 & 129 \\
6 & 13 & 43 & 112
\end{array}
$$

Using the Remainder Theorem, find the value of $f(-5)$, for $f(x)=3 x^{4}+2 x^{3}+4 x$.

$$
\begin{gathered}
x=-5 \\
\div(x+5)
\end{gathered}
$$

-5 32040

$$
f(-5)=1,605
$$

In Class Practice

HW \#3:
 Remainder Theorem

