Warmup:

$$
(3)^{3}+2(3)-3=30
$$

Consider the polynomial function $h(x)=x^{3}+2 x-3$.
a. Divide h b $(x-3) \quad x-3=.0 \quad x=3$

$$
\begin{aligned}
\frac{h(x)}{x-3} & =\frac{x^{3}+2 x-3}{x-3} \\
& =\left(x^{2}+3 x+11\right)+\overbrace{x=3}^{30}
\end{aligned}
$$

b. Find $h(3)$.

$$
h(3)=30
$$

Fund. The,

\square

$$
\begin{aligned}
x-2 & =0 \\
x & =\frac{2}{8}
\end{aligned}
$$

What is the remainder when $3 x^{2}-5 x+6$ is divided by $x-2 ?$

B -4

C 28
D 32

$$
3(2)^{2}-5(2)+6
$$

What is the remainder when $5 \mathrm{x}^{2}+3 \mathrm{x}-7$ is divided by $\mathrm{x}+9$?
A 439
B 425
C 385
D 371

$$
\begin{array}{ccc}
-9 & 3 & -7 \\
-45 & 378
\end{array} \quad-\text { or }-
$$

What is the remainder when $2 x^{2}-3 x+5$ is divided bf $2 x-1$?

$$
2 x-1=0
$$

A 2
B 3 $x=.5$

C 4

$$
\mathrm{D}
$$

D 5

In Class Practice

Remainder

 TheoremFactor Theorem

$$
\begin{aligned}
& f(x)=2 x^{2}-3 x+5 \\
& (2 x-1) \quad x=, 5 \\
& f(.5)=4
\end{aligned}
$$

The Factor Theorem:
When $f(c)=0$ then $X-C$ is a factor of the polynomial
And the other way around, too:
When $X-C$ is a factor of the polynomial then $f(c)=0$

5 a factor of 10 ? $\quad 5 \times 2=10$
S a factor of 12?

$$
\frac{12}{S}=2 R: 2
$$

$$
x-1=0
$$

\#1) $x^{3}-6 x^{2}+11 x-6$

$$
f(1)=0
$$

1) $1 \begin{array}{llll}-6 & 11 & -6\end{array}$

$$
\begin{aligned}
& \frac{\downarrow-5}{\downarrow} \frac{6}{(1-5} L^{6} \\
& \left(x^{2}-5 x+6\right)
\end{aligned}
$$

$$
\begin{aligned}
x^{3}-6 x^{2}+11 x-6 & =(x-1)\left(x^{2}-5 x+6\right) \\
f(x) & =(x-1) \cdot(x-3) \cdot(x-2)
\end{aligned}
$$

Why Is This Useful?

Knowing that $\mathrm{X}-\mathrm{C}$ is a factor is the same as knowing that C is a root (and vice versa).

The factor " $\mathbf{x}-\mathbf{c}$ " and the root " \mathbf{c} " are the same thing
Know one and we know the other

$$
f(x)=x^{3}+5 x^{2}-x-5=(x-1)\left(x^{2}+6 x+5\right)
$$

1)

$$
\begin{aligned}
& (x-1)\left(x^{2}+6 x+5\right) \\
& (x-1)(x+1)(x+5) \\
& \left.\frac{\|}{\prime \prime} \quad x=-1\right) x
\end{aligned}
$$

$$
f(x)=\underbrace{x^{3}}-2 x^{2}-20 x-24=\underbrace{\sqrt{(x+2)}\left(x^{2}-4 x-12\right)}_{(x+2)(x-6)(x+2)}
$$

Is $(\mathrm{x}+2)$ a factor of $\mathrm{f}(\mathrm{x})$?

6 and -2 mut. of 2

$$
f(x)=6 x^{3}+17 x^{2}-5 x-6=(x+3)\left(6 x^{2}-x-2\right)
$$

Is $(x+3)$ a factor of $f(x)$? Yes

$$
\begin{aligned}
& =7(x+3)(3 x-2)(2 x+1)<- \\
& -4 / \int_{-1}^{-12}
\end{aligned}
$$

$$
\begin{aligned}
& 6 x^{2}-4 x+3 x-2 \\
& 2 x(3 x-2)\}+1(3 x-2) \\
& \frac{3 x}{3}=\frac{2}{3} \quad x=2 / 3 \\
& (3 x-2)(2 x+1)
\end{aligned}
$$

Which of the following is a factor of $2 x^{3}-x^{2}-21 x+18$?
A $x-1$
B $x-2$
C $x-3$
D $x-4$

Which of the following is a root of $3 x^{4}+6 x^{3}-4 x^{2}-6 x+4$?
A zero
B 1

$$
\mathrm{C}-1 \quad \mathrm{D}-2
$$

Which of the following is a root of $x^{5}-2 x^{4}-9 x^{3}+17 x^{2}-x+6$?
A -4
B -3

C 3
D 4

Which of the following is a factor of $6 x^{3}+5 x^{2}-2 x-1$?
A $x-1$
B $2 x-1$

C $3 x-1$
D $4 x-1$

HW \#4: Factor Theorem

