Warmup: Factor each of the following:

$$
x^{2}-3 x-28
$$

$$
x^{2}-6 x+9
$$

$$
(x-7)(x+4)
$$

$$
(x-8)(x-3)
$$

$$
(x-3)^{2}
$$

$$
6 x^{2}+11 x-10
$$

$$
(\underline{2} x+\underline{6})(2 x-6)=2(x+3)(2 x-6)
$$

(2.2) $(x+3)(x-3)$

$$
\begin{array}{r}
6 x^{2}+15 x-4 x-10 \\
3 x(2 x+5)-2(2 x+5) \\
(2 x+5)(3 x-2)
\end{array}
$$

Solve the following quadratic equations:

$$
-2 x^{2}+16 x=-96
$$

$$
-2 x^{2}=-450
$$

E.Q.: How do we solve quadratic equations using the square root method?

Solving Using Square Roots

-Another method of solving quadratic equations is by using square roots to get rid of the exponent.
-The square root method works when there is no bx term.
-The equations should look like $a x^{2}+c$ after you set them equal to zero
-In order to solve using square roots:

1) Isolate the variable on one side of the equation.
2) Take the square root of both sides.

* When taking the square root you have positive and negative square root*

3) Simplify the radical expressions.

Examples:

$$
\text { 1) } \begin{aligned}
& n^{2}-6=30 \\
&+6+6 \\
& \sqrt{n^{2}}=\sqrt{36} \\
& n= \pm 6 \cong \begin{array}{l}
n=6 \\
\text { or } \\
n=-6
\end{array}
\end{aligned}
$$

3) $\frac{3 b^{2}}{3}=\frac{-180}{3}$

$$
\sqrt{b^{2}}=\sqrt{-60}
$$

2) $-8 a^{2}=216$
$\overline{-8} \quad \overline{-8}$

$$
\therefore \sqrt{a^{2}}=\sqrt{-27}
$$

No real solutions
4) $4 r^{2}+10=46$
$-10-10$
$\frac{4 r^{2}}{4}=\frac{36}{4} \quad \begin{aligned} & r^{2}=\sqrt{9} \\ & r= \pm 3\end{aligned}$

- You can also use the square root method when you have a s binomial in the problem.
-The steps are the same, except now we isolate the binomial first and then take the square root.

Examples:
9)

$$
\begin{array}{r}
\left\{\begin{array}{r}
\left.(x-4)^{2}\right\}-3= \\
+3 \\
+3 \\
+3
\end{array}\right. \\
\sqrt{(x-4)^{2}}=\sqrt{16} \\
x-4= \pm \pm 4 \\
+4 \quad+4 \\
x=4 \pm 4 \\
x=8 \quad x=0
\end{array}
$$

$$
\begin{aligned}
& \text { 11) } \begin{aligned}
& \frac{1}{2}(x-6)^{2}+2=10 \\
&-2
\end{aligned} \\
& \text { 2. } \begin{aligned}
\frac{1}{8} \cdot(x-6)^{2} & =8 \cdot 2 \\
\sqrt{(x-6)^{2}} & =\sqrt{16} \\
x-6 & \pm 4 \\
+6 & \pm 6 \\
x & =6 \pm 4
\end{aligned}
\end{aligned}
$$

12) $-(x-4)^{2}-12=0$

$$
+12+12
$$

$$
*=10 .
$$

$$
\begin{gathered}
\frac{-(x-4)^{2}}{-1}=\frac{12}{-1} \\
\sqrt{(x-4)_{0}^{2}}=\sqrt{-12}
\end{gathered}
$$

no real $\sqrt{\text { no ots }}$

$$
x=2
$$

13) $5(x+7)^{2}+6=31$
14) $\frac{1}{3}(x+2)^{2}+4=-22$

$$
\text { 16) }-3(x+5)^{2}-2=22
$$

$$
\begin{aligned}
& -3(x+5)^{2}+2 \\
& -\frac{3(x+5)^{2}}{-3}=\frac{24}{-3} \\
& (x+5)^{2}=-8 \\
& \text { No real } \\
& \text { roats! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 15) }(x-11)^{2}+9=90 \\
& -9-9 \\
& (x-11)^{2}=\sqrt{81} \\
& x-11= \pm 9 \\
& x=11 \pm 9 \\
& x=20 \\
& x=2
\end{aligned}
$$

Solving Using Square Roots Together

- Look at what you are given. Do you have just a letter squared? Or do you have a set of parentheses squared?
- if you have just a letter squared, isolate that letter, take the square root, and solve
- if you have a set of parentheses squared, isolate the parentheses, take the square root, and solve.

Examiless

1) $2(\mathrm{a}+3)^{2}-10=122$
2) $8 x^{2}-9=583$

Homework \#5

Solving Quadratics by Square Roots

