Warmup:
(1) $\frac{2(x+5)}{2}=\frac{16}{2}$
(2) $\frac{3(t+1)}{3}=\frac{18}{3}$

1) $2(x+5)=16$
2) $3(t+1)=18$
3) $2(3 y-5)=14$
(3) $\frac{2(3 y-5)}{2}=\frac{14}{2}$
(4) $\frac{4(3 t-2)}{4}=\frac{88}{4}$
4) $4(3 t-2)=88$

$$
\begin{array}{lr}
\begin{array}{l}
3 y-5=7 \\
+5+5 \\
\frac{3 y}{3}=\frac{12}{3} \\
(y=4=8
\end{array} & \begin{aligned}
3 t-2=22 \\
\frac{3 t}{3}=\frac{24}{3}
\end{aligned}
\end{array}
$$

What does it mean to solve a quadratic equation?

- Looking for x-intercepts
- 2 real solutions
- 1 real solution
(double root)

- Oneal solutions
 but 2 imaginary solutions
E.Q.: How do we solve quadratic equations using the square root method?

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=\left(x+r_{1}\right)\left(x+r_{2}\right) \\
& y=a(x+r)^{2}+c \\
& y=a x^{2}+c \quad \text { sq. root method }
\end{aligned}
$$

Solving Using Square Roots

-Another method of solving quadratic equations is by using square roots to get rid of the exponent.
-The square root method works when there is no bx term.
-The equations should look like $a x^{2}+c$ after you set them equal to zero
-In order to solve using square roots:

1) Isolate the variable on one side of the equation.
2) Take the square root of both sides.

* When taking the square root you have positive and negative square root*

3) Simplify the radical expressions.

Examples:

$$
-8 a^{2}+216=0
$$

1)

$$
\begin{aligned}
& n^{2}-6=30 \\
& -30-30 \\
& n^{2}-36=0 \\
& +36+36 \\
& \frac{n^{2}}{}=\sqrt{36} \begin{array}{l}
n= \pm 6 \\
n=6 \text { or }-6
\end{array}
\end{aligned}
$$

$$
\text { 2) } \begin{aligned}
& \frac{-8 a^{2}}{-8}=\frac{-216}{-8} \\
& \sqrt{a^{2}}=\sqrt{27} \\
& a= \pm 3 \sqrt{3} \\
& 4 r^{2}-36=0
\end{aligned}
$$

3) $-3 \mathrm{~b}^{2}=\frac{-180}{-3}$
4)

$$
\begin{aligned}
& \sqrt{b^{2}}=\sqrt{60} \\
& b= \pm 2 \sqrt{15}
\end{aligned}
$$

$$
\begin{aligned}
& 4 r^{2}+10=46 \\
&-10-10 \\
& \frac{4 r^{2}}{4}=\frac{36}{4} \sqrt{r^{2}}=\sqrt{9} \\
& r= \pm 3
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { 5) } 5 v^{2}+8=243 \\
-8 & -8 \\
\frac{5 v^{2}}{5} & =\frac{235}{5}
\end{array}\right\} \begin{aligned}
& \sqrt{v^{2}}=\sqrt{47} \\
& v= \pm \sqrt{47}
\end{aligned}
$$

6)-

$$
\begin{aligned}
& -8 n^{2}+8=-120 \\
& -8=-8 \\
& \frac{-8 n^{2}}{-8}=\frac{-128}{-8} \\
& \sqrt{n^{2}}=\sqrt{16}
\end{aligned}
$$

7) $3 x^{2}+1=52$
8) $2 x^{2}=156$

$$
\begin{aligned}
\frac{3 x^{2}}{3} & =\frac{51}{3} \\
\sqrt{x^{2}} & =\sqrt{17} \\
x & = \pm \sqrt{17}
\end{aligned}
$$

$$
\sqrt{x^{2}}=\sqrt{78}
$$

$$
x= \pm \sqrt{78}
$$

- You can also use the square root method when you have a square binomial in the problem.
-The steps are the same, except now we isolate the binomial first and then take the square root.

Examples:

9) $(x-4)^{2}-3=13$ $\sqrt{(x-4)^{2}}=\sqrt{16}$

$$
x-4= \pm 4
$$

$$
+4 \quad+4
$$

$$
x=8
$$

$$
x=0
$$

$$
\begin{gathered}
-3+2 \sqrt{5} \\
\text { ह } \\
-3-2 \sqrt{5}
\end{gathered}
$$

or

$$
x=\overrightarrow{4}
$$

D5 Solving by Square Roots_4th.GWB - 8/13 - Tue Aug 222017 08:03:29
11)

$$
\begin{gathered}
\frac{1}{2}(x-6)^{2}+2=\mathbf{1 0} \\
-2 \\
\frac{1}{-2}(x-6)^{2}=\frac{8}{\frac{1}{2}} \\
\frac{1}{\frac{1}{2}} \\
\sqrt{(x-6)^{2}}=\sqrt{16} \\
x-6= \pm 4 \\
+6+6
\end{gathered}
$$

13) $5(x+7)^{2}+\underset{-6}{6}=\underset{-6}{\mathbf{3 1}}$

$$
\begin{array}{rr}
\frac{5(x+7)^{2}}{5}=\frac{25}{5} & \sqrt{(x+7)^{2}}=\sqrt{5} \\
& x+7= \pm \sqrt{5} \\
& x=-7 \pm \sqrt{5}
\end{array}
$$

12) $-(x-4)^{2}$

$$
\begin{aligned}
& 4)^{2}+\mathbf{1 2}=\mathbf{0} \\
& -12-12 \\
& -4)^{2}=\frac{-12}{-1} \\
& -4)^{2}=\sqrt{12} \\
& x-4= \pm 2 \sqrt{3} \\
& +4+4 \\
& x=4 \pm 2 \sqrt{3}
\end{aligned}
$$

$$
\frac{-(x-4)^{2}}{-1}=\frac{-12}{-1}
$$

$$
\sqrt{(x-4)^{2}}=\sqrt{12}
$$

$$
x-4= \pm 2 \sqrt{3}
$$

14) $\frac{1}{3}(x+2)^{2}+4=-22$

$$
\begin{aligned}
& \frac{\frac{1}{3}(x+2)^{2}}{\frac{1}{3}}=\frac{-26}{\frac{-1}{3}} \\
& \sqrt{(x+2)^{2}}=\sqrt{78} \\
& x+2= \pm \sqrt{78} \\
& x=-2 \pm \sqrt{78}
\end{aligned}
$$

$$
\text { 15) }(x-11)^{2}+9=90
$$

$$
\text { 16) } 3(x+5)^{2}-2=22
$$

Solving Using Square Roots Together

- Look at what you are given. Do you have just a letter squared? Or do you have a set of parentheses squared?
- if you have just a letter squared, isolate that letter, take the square root, and solve
- if you have a set of parentheses squared, isolate the parentheses, take the square root, and solve.

Examiless

1) $2(\mathrm{a}+3)^{2}-10=122$
2) $8 x^{2}-9=583$

Homework \#7

Solving Quadratics by Square Roots

