Varmup:

- 2(x + 5) = 161)
- 3(t + 1) = 182)
- 2(3y-5) = 143)
- 4) 4(3t-2) = 88

- $(1) \frac{A(x+s) = 16}{2}$ X + 5 = 8-5 -5
 - $\chi = 3$
- $(4) \frac{4(32-2)=88}{4}$ (3) 2(3y-5)=1432-2=22 3y-5 = 7+2 +3 $\frac{3}{3} = \frac{12}{3} = \frac{12}{3} = \frac{12}{3} = \frac{3}{3} = \frac{24}{3}$

3(++1)=18

3 3

+1=6

 $\pm = 5$

What does it mean to solve a quadratic equation? Looking for x -intercepts -2 real solutions -1 real solution (double root) - O real solutions or _____ but d'imaginary solutions

E.Q.: How do we solve quadratic equations using the square root method?

$$y = \alpha x^{2} + bx + c$$

$$g = (x + r_{1})(x + r_{2})$$

$$y = \alpha(x + r) + c$$

$$= a(x+r) + c$$

= $a(x+r) + c$
sq. root meth
$$= a(x^{2} + c)$$

Solving Using Square Roots

-Another method of solving quadratic equations is by using square roots to get rid of the exponent.

-The square root method works when there is no bx term.

-The equations should look like $\underline{ax^2 + c}$ after you set them equal to zero

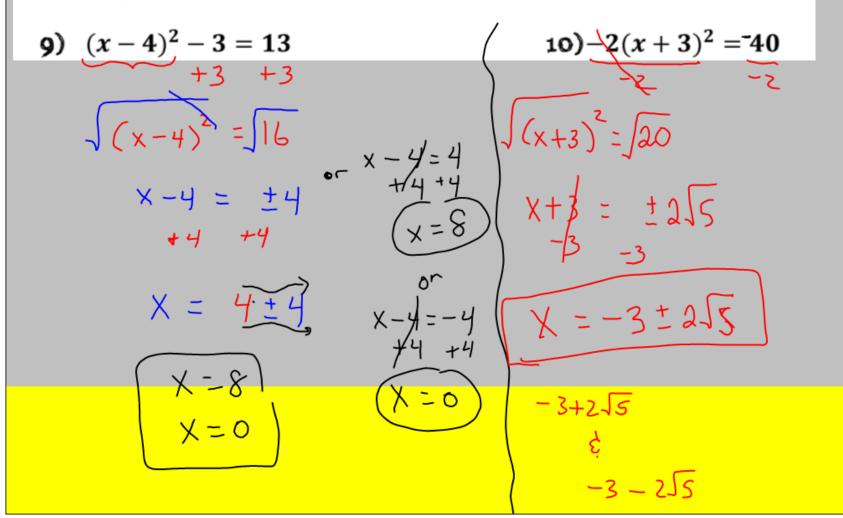
-In order to solve using square roots:

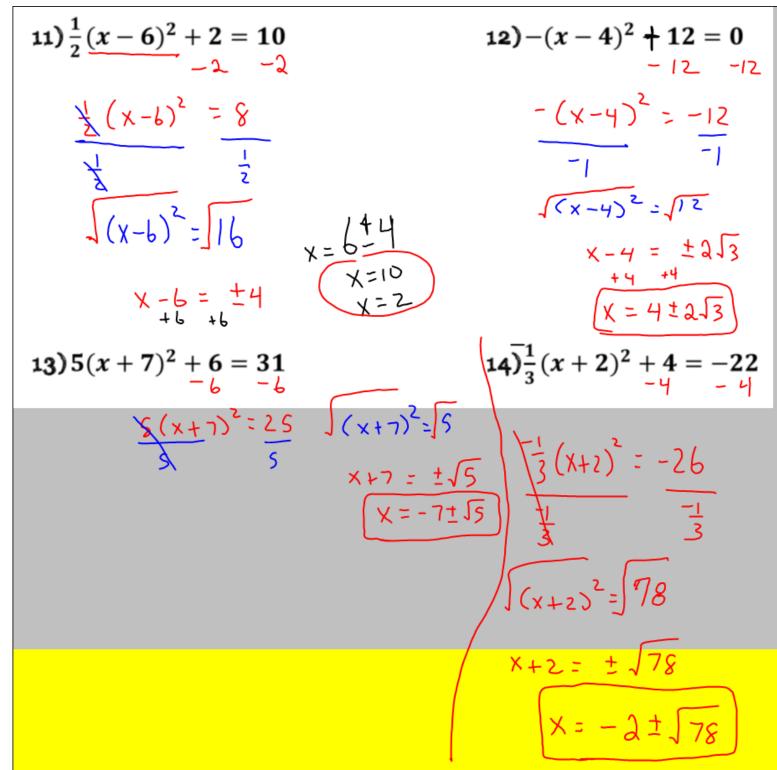
1) <u>Isolate</u> the variable on one side of the equation.

2) Take the square root of both sides.

* When taking the square root you have positive and negative square root*

3) <u>Simplify</u> the radical expressions.


Examples:	-822+216=0
1) $n^2 - 6 = 30$ -30 - 30 $n^2 - 36 = 00$ +36 + 36	2) $-8a^{2} = -216$ $-8a^{2} = -8a^{2}$ $-\sqrt{a^{2}} = \sqrt{a^{2}}$ $a = \pm 3\sqrt{3}$
$\sqrt{n^2} = \sqrt{36} \qquad n = \pm 6$ $(n = -6 \text{ or } -6)$ $(3)^2 = -180$ $(-3)^2 = -180$	$4r^2 - 36 = 0$ 4) $4r^2 + 10 = 46$ -10 - 10
$\int_{b}^{2} = 60$ (b = ± a.15)	$\frac{4}{4}r^{2} = \frac{36}{4} \int \frac{1}{r^{2}} \frac{9}{r^{2}} \frac{9}{r^{2}} \frac{1}{r^{2}} \frac{9}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{9}{r^{2}} \frac{1}{r^{2}} $


5) $5v^2 + 8 = 243$	6)-8n ² + 8 = -120 -8^{-5} - 8
$5v^{2} = 235$ 5 $5\sqrt{v^{2}} = 47$	$\frac{-8n^{2} = -128}{-8}$ $\int n^{2} = \int 16$ (n - +4)
7) $3x^2 + 1 = 52$	8) $2x^2 = 156$ 2 2
$\frac{3x^2 = 51}{3}$ $\sqrt{x^2 - 17}$	$\sqrt{\chi^2} = \sqrt{78}$ $\chi = \pm \sqrt{78}$
$X = \pm \sqrt{17}$	

- You can also use the square root method when you have a square binomial in the problem.

-The steps are the same, except now we <u>isolate the binomial</u> first and then take the square root.

Examples:

15)
$$(x-11)^2 + 9 = 90$$
 16) $3(x+5)^2 - 2 = 22$

Solving Using Square Roots Together

- Look at what you are given. Do you have just a letter squared? Or do you have a set of parentheses squared?

 - if you have just a letter squared, isolate that letter, take the square root, and solve

- if you have a set of parentheses squared, isolate the parentheses, take the square root, and solve.

3)
$$4n^2 + 10 = 14$$

4)
$$3(n - 10)^2 + 4 = 247$$

Homework #7

Solving Quadratics by Square Roots