

What if your money doubled every 3 weeks.
Suppose that currently, you have $\$ 10$ in the bank. How much monerwill you have in 6 months, assuming that there are four weeks each month? $\$ / 2,560$ How long will it take for there to be $\$ 10,240$ in your account? 30 weechs.

weeds 0 ninths	x	y
	0	10
3 whys	1	20
6 whys	2	40
9	3	80
12	4	160
15	5	320
18	6	640
21	7	1280
24	8	2560
27	9	$5+20$
30	10	10,240

24 weeks in bmonths
double 8 times

$$
\begin{aligned}
& y=10(2)^{8}=2560 \\
& \frac{10,240}{10}=\frac{10(2)^{x}}{10} \\
& \left(\frac{1024}{2^{10}=2^{x}}=2^{x}\right. \\
& 2^{7}=128 \\
& 2^{2^{n d}}=4 \\
& 2^{5}=256 \quad 2^{3}=8 \\
& 2^{9}=512 \\
& 2^{4}=16 \\
& 2^{5}=32 \\
& 2^{10}=1024 \\
& 2^{6}=64
\end{aligned}
$$

5. $y=-2\left(\frac{1}{2}\right)^{x+4}$

7. $y=-(5)^{x+3}+4$
8. $y=3(2)^{x-4}-6$
9. $y=\left(\frac{1}{3}\right)^{x+5}-5$

Critical Points: $(-3,3)(-2,-1)$
Asymptote: \qquad
y-intercept: \qquad Domain: $(-\infty, \infty)$ Range: $(-\infty, 4)$
End Behavior: $x \rightarrow \infty, y \rightarrow-\infty$ $x \rightarrow-\infty, y \rightarrow 4$

Critical Points: $(4,-3)(5,0)$
Asymptote: \qquad y-intercept: $\quad(0,-5.81)$ Domain: $(-\infty, \infty)$ Range: $(-6, \infty)$ End Behavior: $x \rightarrow \infty, y \rightarrow \infty$ $x \rightarrow-\infty, y \rightarrow-6$

Critical Points: $(-5,-4)(-y,-1 y / s)$
Asymptote: \qquad
y-intercept: \qquad
Domain: $(-\infty, \infty)$ Range: $(-5, \infty)$
End Behavior: $x \rightarrow \infty, y \rightarrow-5$

$$
x \rightarrow-\infty, y \rightarrow \infty 0
$$

E.Q.:

How do we solve exponential equations?

D5 Solving Exp Equations_3rd.GWB - 7/19 - Tue Oct 202015 08:15:42

Powers of Numbers:

- In order to solve exponential equations, it is beneficial to be familiar with the different powers of some

Powers of 2: $\quad 1,2,4,8,16,32,64,128,256,512,1024$
Powers of 3:
$1,3,9,27,81,243,729$
Powers of 4: $1,4,16,64,256,1024$,

Powers of 5:

$$
1,5,25,125,625
$$

Powers of 6:

$$
1,6,36,216,
$$

Powers of 7:

$$
1,7,49,343
$$

Property of Equality of Exponential Functions:
If b is a positive number other than 1 , then $b^{x}=b^{y}$ if and only if $x=y$. In other words, if the bases are the same, then the exponents must be equal.

$$
\begin{aligned}
& 2^{x}=1024 \\
& \underline{2}^{\underline{x}}=\underline{2}^{10} \\
& x=10
\end{aligned}
$$

Example 1: Solve for x

$$
12^{\prime}=12^{x}
$$

Example 2: Solve for x

$$
8^{(x-3)}=8^{4} \quad x=7
$$

$$
x-3=4
$$

$$
x=7
$$

Example 3: Solve for x

$$
\begin{aligned}
& 5^{x}=25 \\
& 5^{x}=5^{2} \\
& x=2
\end{aligned}
$$

1) Get the \qquad for the exponential equation.
2) Set the exponents = to each other
3)

Solve
 for the variable.

Example 4: Solve for x

$$
\begin{aligned}
3^{4 x} & =27 \\
3^{4 x} & =3^{3} \\
\frac{4 x}{4} & =\frac{3}{4} \\
x & =\frac{3}{4} \text { or } .75
\end{aligned}
$$

You try:
Solve each of the following equations

$$
\begin{aligned}
& 2^{x}=8 \\
& 2^{x}=2^{3} \\
& x=3 \\
& x+1=3 \\
& x=2
\end{aligned}\left\{\begin{array}{c}
4^{x+1}=64 \\
4^{x+1}=4^{3} \\
\frac{2 x}{2}=\frac{2}{2} \\
x=1
\end{array}\right.
$$

Example 5: Solve for y

$$
\begin{aligned}
9^{3 y} & =27 \\
\left(9^{3 y}\right. & =3^{3} \\
\left(3^{2}\right)^{3 y} & =3^{3} \\
3^{6 y} & =3^{3} \\
\frac{6 y}{6} & =\frac{3}{6} y=\frac{1}{2} \circ r \cdot 5
\end{aligned}
$$

Example 6: Solve for x

$$
\begin{aligned}
32 & =4^{x-3} \quad 2(x-3) \\
2^{5} & =\left(2^{2}\right)^{x-3} \\
2^{5} & =2^{2 x-6} \\
5 & =2 x-6 \\
11 & =2 x \\
5.5 \text { or } 11 / 2 & =x
\end{aligned}
$$

You try:
Solve each of the following equations

$$
\begin{array}{lrr}
8=16^{x} & 125=25^{6 y} & 9^{x-1}=27 \\
2^{3}=\left(2^{4}\right)^{x} & 5^{3}=\left(5^{2}\right)^{6 y} & \left(3^{2}\right)^{x-1}=3^{3} \\
2^{3}=2^{4 x} & 5^{3}=5^{12 y} & 3^{2 x-2}=3^{3} \\
3=4 x & 3=12 y & 2 x-2=3 \\
x=3 / 4 & y=\frac{3}{12}=\frac{1}{4} & 2 x=5 \\
x=5 / 2
\end{array}
$$

HW \#4

Solving Exponential

 Equations