E.Q.: How do we create and solve linear equations in two variables?

Standard:
 MGSE9-12.A.CED. 2

Create linear equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
(The phrase "in two or more variables" refers to formulas like the compound interest formula, in which $\mathrm{A}=\mathrm{P}(1+\mathrm{r} / \mathrm{n})$ nt has multiple variables.)

Vocabulary:
linear equation:

$$
4 \text { or }-3
$$

- an algebraic equation in which each term is either a constant or the product of a constant and (the first power of) a single variable. $4 x-3 x \quad \frac{1}{2} x$ Linear equations can have one or more variables.
es. lope - intercept form

$$
8=4 x+2
$$

$$
y=\frac{m}{\hat{N}} x+b
$$

$$
\begin{aligned}
& y=5 x+0 \\
& y=x+2 \\
& y=5
\end{aligned}
$$

independent variable: (x)

- It is a variable that stands alone and isn't changed by the other variables you are trying to measure.
- For example, someone's age might be an independent variable.
dependent variable: (y)
- A dependent variable is what you measure in the experiment and what is affected during the experiment.
- The dependent variable responds to the independent variable.
- It is called dependent because it "depends" on the independent variable.

Slope and Rate of Change:

- The word slope (gradient, incline, pitch) is used to describe the measurement of the steepness of a straight line.
- The higher the slope, the steeper the line.
- The slope of a line is a rate of change.

$$
\downarrow \text { refers to refers to slope. }
$$

a line
y-intercept: (b)

- is a point where the graph of an equation intersects with the y-axis of the coordinate system.
- these points satisfy $x=0$.

Cartesian Plane

x-intercept:

- is a point where the graph of a function or relation intersects with the x-axis.
- these points satisfy $\underbrace{y=0}$.

$$
\begin{aligned}
& \text { Multiple Representations of a Linear } \\
& \text { Relationship } \left.\quad 2=\frac{2}{1}\right)=\frac{\text { rise }}{\text { run }}=\frac{\text { chasing }}{\text { chayginx }} \frac{\Delta y}{\Delta y}
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=2(x-1) \\
& y-z=2 x-2 \\
& y=2 x+1 \\
& \text { Graph }
\end{aligned}
$$

Given the following equation, $\mathbf{y}=4 \mathbf{x}+\mathbf{3}$, create a table of values that is representative of that equation.

X	y
$+<-2$	$4(-2)+3=-5$
$+1<-1$	$4(-1)+3=-1$
$+1<0$	$4(0)+3=3$
1	$4(1)+3=7$
$+1<2$	$4(2)+3=11$
$+1<3$	$4(3)+3=15$

Given the following equation, $\mathbf{y}=\mathbf{- 2 x}+\mathbf{5}$,

 create a table of values that is representative slope of that equation.$y=-2 x+5$

Given the following table, is this table representative of a linear relationship?

$$
y=\underbrace{m}_{\text {slope }} x+\underbrace{b^{2}}_{y-\text { int }}
$$

If so, what is the equation?

$$
\begin{aligned}
& y=5 x=5 \\
& y=5(-2)-5 \\
& y=-10-5 \\
& y=-15 \\
& y=5(1)-5 \\
& y=5-5 \\
& y=0
\end{aligned}
$$

Given the following table, is this table representative of a linear relationship?

If so, what is the equation?

Given the following table, is this table representative of a linear relationship? No

If so, what is the equation?
There is a not a

x	y
-22	-15
+0	-10
3	-5
$3<$	0
10	0
15	5
50	10

$$
\begin{aligned}
& \text { slope }=\frac{5}{2}=2.5 \\
& \text { slope }=\frac{s}{3}=1 . \overline{6}
\end{aligned}
$$

Ex. The data below represent the value of a car as it depreciates over a period of 5 years.

independent variable $=$ years (x)
dependent variable $=$ value (y)
Calculate and interpret the slope. [rate of changed]
For each additional year, the car's value decreased by 26.00

Ex. The data below represent the value of a car as it depreciates over a period of 5 years.

Years	0	1	2	3	4	5
V alue	15000	12400	9800	7200	4600	2000

State and interpret the y-intercept. y-int: ${ }^{H /} 15,000$
When the car is new, at time $=\underline{O}$ years the car is worth $\$ 15,000$.

Ex. The data below represent the value of a car as it depreciates over a period of 5 years.

Years	0	1	2	3	4	5
Value	15000	12400	9800	7200	4600	2000

Write an equation that models this relationship:
$y=m x+b$

$$
y=-2600 x+15000
$$

Use your model to determine the value of the car at 3.5 years.
" y "

$$
\begin{aligned}
& y=-2600 x+15000 \\
& y=-2600(3.5)+15000 \\
& y=5,900
\end{aligned}
$$

Use your model to determine when the car will be worth $\$ 700$?

$$
\begin{gathered}
\text { "y" } y=-2600 x+15000 \\
\begin{array}{c}
700=-2600 x+15000 \\
-15000 \\
-\frac{14300}{-2600}=\frac{-2600 x}{-2600} \\
-15000
\end{array} \\
\begin{array}{c}
5.5 y e a r s=x
\end{array}
\end{gathered}
$$

The table below shows the depth in meters of a scuba diver after a certain amount of time under water.
independent variable $=$
dependent variable $=$

Position of Scuba Diver	
Time (s)	Depth (m)
\boldsymbol{x}	\boldsymbol{y}
0	-24
3	-18
6	-12
9	-6
12	0

Find the average rate of change for this relationship. Interpret this value. average rate of change $=$ \qquad

For each additional \qquad that elapses, the diver has risen meters under the surface of the water.

State and interpret the y -intercept. y -intercept $=$ \qquad

At time $=$ \qquad , the scuba diver is \qquad meters under the surface of the water.

Position of Scuba Diver	
Time (s)	Depth (m)
\boldsymbol{x}	\boldsymbol{y}
0	-24
3	-18
6	-12
9	-6
12	0

Write an equation that models this relationship:
 $\mathrm{y}=\mathrm{mx}+\mathrm{b}$

Position of Scuba Diver	
Time (s)	Depth (m)
\boldsymbol{x}	\boldsymbol{y}
0	-24
3	-18
6	-12
9	-6
12	0

Use your model to determine the diver's depth at 5 seconds. \qquad

Use your model to predict how many seconds it takes the diver reach 9 meters below the surface. \qquad

Homework \#4: Two Variable Equations

