Warmup:
Solve each equation by square roots

$$
\begin{gathered}
6 r^{2}-9=87 \\
+9 \\
\frac{6 r^{2}}{6}=\frac{96}{6} \\
\sqrt{r^{2}}=\sqrt{16} \\
r= \pm 4
\end{gathered}
$$

$$
\begin{gathered}
2(a-6)^{2}-45=53 \\
+45+45 \\
\left.\begin{array}{c}
\frac{2(a-b)^{2}}{2}=\frac{98}{2} \\
\sqrt{(a-6)^{2}}=\sqrt{49} \\
a-b= \pm 7 \\
+6
\end{array}\right)+6 \\
a=6 \pm 7 \\
a=13 \\
a=-1
\end{gathered}
$$

1) $m^{2}=81$

$$
\begin{aligned}
& m= \pm \sqrt{81} \\
& m=-9 \text { or } 9
\end{aligned}
$$

3)

$$
\begin{aligned}
& b^{2}+4=76 \\
& b^{2}=72 \\
& b= \pm \sqrt{72}= \pm \sqrt{36 \cdot 2}= \pm 6 \sqrt{2} \\
& b=-6 \sqrt{2} \text { or } 6 \sqrt{2}
\end{aligned}
$$

2) $p^{2}=82$

$$
p= \pm \sqrt{82}
$$

$$
p=-\frac{2}{\text { an }} \text { or } \sqrt{2} \sqrt{1}
$$

4)

$$
\begin{aligned}
& x^{2}+3=27 \\
& x^{2}=24 \\
& x= \pm \sqrt{24}= \pm \sqrt{4 \cdot 6}= \pm 2 \sqrt{6} \\
& x=-2 \sqrt{6} \text { or } 2 \sqrt{6}
\end{aligned}
$$

5)

$$
\begin{aligned}
& m^{2}+8=33 \\
& m^{2}=25 \\
& m= \pm \sqrt{25}= \pm 5 \\
& m=-5 \text { or } 5
\end{aligned}
$$

7)

$$
\begin{aligned}
8 v^{2}+4 & =444 \\
8 v^{2} & =440 \\
v^{2} & =55 \quad v=-\sqrt{55} \text { or } \sqrt{55} \\
v & = \pm \sqrt{55} \quad \text {, }
\end{aligned}
$$

6)

$$
\begin{aligned}
& -9 x^{2}=504 \\
& x^{2}=-56 \\
& x= \pm \sqrt{-56}=\text { No real roots }
\end{aligned}
$$

9) $8 x^{2}+7=263$
10)

$$
\begin{aligned}
10 k^{2}-5 & =-165 \\
10 k^{2} & =-160 \\
k^{2} & =-16 \\
k & = \pm \sqrt{-16}=\text { No realroots }
\end{aligned}
$$

$$
x=-4 \sqrt{2}+4 \sqrt{2}
$$

17)

$$
\begin{aligned}
&-(x-10)^{2}-4=12 \\
&-(x-10)^{2}=16 \\
&(x-10)^{2}=-16 \\
&(x-10)= \pm \sqrt{-16}
\end{aligned}
$$

No real
roots
18)

$$
\begin{aligned}
& 2(x-7)^{2}+9=107 \\
& 2(x-7)^{2}=98 \\
& (x-7)^{2}=49 \\
& x-7= \pm 7 \\
& x=7 \pm 7
\end{aligned} \quad x=7+7=14
$$

19) $(x+6)^{2}-4=40$
20) $\quad 7(x-8)^{2}=112$

$$
\begin{aligned}
& (x+6)^{2}=44 \\
& x+6= \pm \sqrt{44} \\
& x= \pm \sqrt{44}-6 \\
& x= \pm \sqrt{4 \cdot 11}-6 \\
& x= \pm 2 \sqrt{11}-6
\end{aligned}
$$

E.Q.:

How do we solve quadratic equations using the completing the square method?

Factor each of the following:

$$
\begin{aligned}
& x^{2}+2 x+1=(x+1)(x+1)=(x+1)^{2} \\
& x^{2}-4 x+4=(x-2)(x-2)=(x-2)^{2} \\
& x^{2}+6 x+9=(x+3)(x+3)=(x+3)^{2} \\
& x^{2}-10 x+25=(x-5)(x-5)=(x-5)^{2} \\
& x^{2}+20 x+\frac{100}{4}=(x+10)^{2} \\
& \frac{20}{2}=10 \\
& 10 \cdot 10=100
\end{aligned}
$$

Remember our perfect square pattern:

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

Let's say we want to solve the following equation:

$$
x^{2}+10 x+25=-10
$$

What do we do first?

$$
x^{2}+10 x+15=0
$$

What do we next? Factor!

$x^{2}+10 x+15=0$

It's not factorable now!!
So what do we do?

Let's try factoring the quadratic first, before we set it equal to 0 !!

$$
\begin{aligned}
& -\underbrace{x^{2}+10 x+25}=10 \\
& (x+5)(x+5)=10
\end{aligned}
$$

In fact, now we don't need to set it equal to zero.

Why not?

$$
\sqrt{(x+5)^{2}}=\sqrt{10}
$$

$$
x+5= \pm \sqrt{10}
$$

$$
\begin{array}{ll}
-5 & -5
\end{array}
$$

$$
(x+5)^{2}=\sqrt{16}
$$

$$
x=-5 \pm \sqrt{10}
$$

$$
x+5= \pm 4
$$

$$
x=-5 \pm 4
$$

$$
\begin{aligned}
& x=-1 \\
& x=-9
\end{aligned}
$$

Let's try this one:

$x+y_{4}^{\prime}=10$

$$
x^{2}+8 x+2=0 \quad 0_{-2}
$$

$\frac{8}{2}=4 \quad x^{2}+8 x+16=-2+16$
$4^{2}=16$
It's not factorable at all is
$2(x+4)=(10) 2 i t$?
$\begin{aligned} & 2 x+8=20 \\ &-8\end{aligned}$
$\begin{aligned} & \frac{2 x}{2}= \frac{12}{2} \\ & x=6\end{aligned}$

What if we move the 2 over to the other side?

$$
x^{2}+8 x+\underline{16}=-2+16
$$

$$
\text { CÓMPLETE THE }\left(x+4^{\circ}=4\right.
$$

SQUARE
What value should fill in the blank so that the quadratic is a perfect square?

Solve by completing the square:

$$
x^{2}-4 x+10=42
$$

$(-2)^{2}=4$

$$
\left.\begin{array}{rl}
x-2 & = \pm 6 \\
+2 & +2 \\
x=2 \pm 6
\end{array},=-4\right)
$$

$$
\begin{aligned}
x^{2}+16 x & +4=0 \\
-4 & -4
\end{aligned}
$$

$$
x^{2}+16 x+64=-4+64 \quad \frac{16}{2}=8
$$

complete the sq. $\underset{\text { sq. }}{\substack{\text {. }}}(x+8)^{2}=60$ $8^{2}=64$

$$
\begin{aligned}
& \sqrt{(x+8)^{2}}=\sqrt{60} \\
& x \pm-8=-8 \pm 2 \sqrt{15} \\
& x=-8 \pm 2 \sqrt{15}
\end{aligned}
$$

To use completing the square to solve a quabratic $\left(a x^{2}+B x+C\right)$ you need to ...

1. Move the constant (c) over to one side of the equation
2. Factor out the leading coefficient (if needed) of the ax^{2} and bx
3. Find the number that would make the trinomial a Trinomial Square
4. Add that number to the other side (whatever you do to one side of an equation you need to do to the other.)

- If the leading coefficient had been factored out you need to multiply the number by what was factored out and add new number to the other side

5. Factor the trinomial square

Solve by completing the square:

$$
\begin{array}{rlr}
4 x^{2}-8 x-32 & =0 \\
+32 & +32 & \\
4 x^{2}-8 x & =32 & \frac{-2}{2}=(-1) \\
4\left(x^{2}-2 x+1\right) & =32+\frac{4}{4}-\frac{4(x-1)^{2}}{}=1 \\
--\frac{4(x-1)^{2}}{4} & =\frac{36}{4} & \sqrt{(x-1)^{2}}=\sqrt{9} \\
& x=4 \text { or -2 } & x=1 \pm 3
\end{array}
$$

$$
\begin{aligned}
& \text { You try: } \\
& 2 x^{2}-12 x-10=44 \\
& +10+10 \\
& 2 x^{2}-12 x=54 \\
& 2\left(x^{2}-6 x+9\right)=54+18 \\
& \frac{-6}{2}=-3 \\
& 2(x-3)^{2}=72 \\
& (-3)^{2}=9 \\
& \frac{2(x-3)^{2}}{2}=\frac{72}{2} \\
& x=3 \pm 6 \quad \sqrt{(x-3)^{2}}=\sqrt{36} \\
& x=9 \quad x=-3 \\
& x-3= \pm 6
\end{aligned}
$$

HW \#6:
 Solving Quadratic Equations Using Completing the Square

