Warmup:
Simplify the following radicals

Algebra 1 HW \#6 Simplifying Radicals \qquad
Simplify.

1) $\sqrt{12}=\sqrt{\underline{4} \cdot 3}=2 \sqrt{3}$
2) $\sqrt{72}=\frac{\sqrt{(36 \cdot 2}}{\sqrt{6 \cdot 6 \cdot 2}}=6 \sqrt{2}$
3) $\sqrt{75}=\sqrt{25 \cdot 3}=5 \sqrt{3}$
4) $\sqrt{18}=\sqrt{\underline{9 \cdot 2}}=3 \sqrt{2}$

5) $\sqrt{200}=\sqrt{100 \cdot 2}=10 \sqrt{2}$
6)

$$
\begin{aligned}
\sqrt{128 n^{4}} & =\sqrt{64 \cdot 2 \cdot n^{4}} \\
& =8 n^{2} \sqrt{2}
\end{aligned}
$$

8)

$$
\begin{aligned}
\sqrt{24 m^{2}} & =\sqrt{4 \cdot 6 \cdot m^{2}} \\
& =2 m \sqrt{6}
\end{aligned}
$$

9) $\sqrt{72 x}=\sqrt{36 \cdot 2 \cdot x}$

$$
=6 \sqrt{2 x}
$$

10) $\sqrt{8 x^{4}}=\sqrt{4 \cdot 2 \cdot x^{4}}$

$$
=2 x^{2} \sqrt{2}
$$

11) $\sqrt{245 k^{2}}=\sqrt{49 \cdot 5 \cdot k^{2}}$
12) $\sqrt{12 x^{2}}=\sqrt{4 \cdot 3 \cdot x^{2}}$

$$
7 k \sqrt{5}
$$

$$
=2 x \sqrt{3}
$$

13) $\sqrt{448 x y^{4}}=\sqrt{64 \cdot 7 \cdot x \cdot y^{4}}$

$$
=8 y^{2} \sqrt{7 x}
$$

14)

$$
\begin{aligned}
\sqrt{320 x^{3} y^{2}} & =\sqrt{64 \cdot 5 \cdot x \cdot x^{2} \cdot y^{2}} \\
& =8 x y \sqrt{5 x}
\end{aligned}
$$

15)

$$
\begin{aligned}
\sqrt{448 u^{4} v} & =\sqrt{64 \cdot 7 \cdot u^{4} \cdot v} \\
& =8 u^{2} \sqrt{7 v}
\end{aligned}
$$

17)

$$
\begin{aligned}
-4 \sqrt{28 x y^{2}} & =-4 \sqrt{4 \cdot 7 \cdot x \cdot y^{2}} \\
& =-4 \cdot 2 y \sqrt{7 x} \\
& =-8 y \sqrt{7 x}
\end{aligned}
$$

16) $\sqrt{125 a^{3} b^{4}}=\sqrt{25 \cdot 5 \cdot a \cdot a^{2} \cdot b^{4}}$

$$
=5 a b^{2} \sqrt{5 a}
$$

18) $2 \sqrt{125 x^{2} y^{2}}$

$$
\begin{aligned}
& =2 \sqrt{25 \cdot 5 \cdot x^{2} \cdot y^{2}} \\
& =2 \cdot 5 x y \sqrt{5} \\
& =10 x y \sqrt{5}
\end{aligned}
$$

$$
\text { 19) } \begin{aligned}
-7 \sqrt{147 m^{2} n^{3}} & \left.=-7 \sqrt{49 \cdot 3 \cdot m^{2} \cdot n \cdot n^{2}} 20\right) 2 \sqrt{80 m^{2} n} \\
& =2 \sqrt{16 \cdot 5 \cdot m^{2} \cdot n} \\
& =-7.7 m n \sqrt{3 n} \\
& =2.4 m \sqrt{5 n} \\
& =-49 m n \sqrt{3 n}
\end{aligned}
$$

Add or subtract Radical Expressions
To be considered like radicals they have to be the same root and have the same number inside the house (called the radicand). For example,
$2 \sqrt{3}$ and $5 \sqrt{3}$ are like radicals
$\sqrt{2}$ and $\sqrt{5}$ are not like radicals - they have different radicands

$$
\begin{array}{lll}
2 x & 2 \sqrt{3} & \dot{4} \\
2 x+5 x & \sqrt{3} \\
7 x & 2 \sqrt{3} & +5 \sqrt{3} \\
7 x & & 7 \sqrt{3}
\end{array}
$$

To add or subtract radical expressions, the radicands must be alike in the same way that monomial terms must be alike to add or subtract.

Monomials

$$
4 x+2 x=6 x
$$

$$
9 y-7 y=2 y
$$

Radicals

$$
\underset{\tau}{4 \sqrt{5}}+\underset{\tau}{2} \sqrt{5}=(\underline{4}+2) \sqrt{5}=\underline{6} \sqrt{5}
$$

$$
9 \sqrt{3}-7 \sqrt{3}=(9-\underline{7}) \sqrt{3}=2 \sqrt{3}
$$

You try!!

a. $2 \sqrt{5}+7 \sqrt{5}=9 \sqrt{5}$
b. $9 \sqrt{7}-1 \sqrt{7}=8 \sqrt{7}$

$$
\begin{gathered}
10 x+4 x-5 y \\
14 x-5 y
\end{gathered}
$$

c. $\underbrace{5 \sqrt{3}-2 \sqrt{3}}+\sqrt{3}$ $3 \sqrt{3}+1 \sqrt{3}$
d. $10 \sqrt{6}+4 \sqrt{6}-5 \sqrt{2}$ $14 \sqrt{6}-5 \sqrt{2}$

If a sum or difference involves terms that are not like radicals, we may be able to combine terms after simplifying the radicals according to our earlier methods.

Simplify each expression

$3 \sqrt{2}+\underbrace{\sqrt{8}}$ we don't have like radicals, but we can simplify $\sqrt{8}$. Remember $\ldots \sqrt{8}=\underline{2} \sqrt{2}$ $3 \sqrt{2}+2 \sqrt{2}$ $5 \sqrt{2}$
$5 \sqrt{3}-\sqrt{12}$ we don't have like radicals, but we can simplify $\sqrt{12}$. Remember $\ldots \sqrt{12}=2 \sqrt{3}$
$5 \sqrt{3}-2 \sqrt{3}$

a. $\sqrt{2}+\sqrt{18}$
b. $5 \sqrt{3}-\sqrt{27}$

$$
\sqrt{2}+3 \sqrt{2}
$$

$$
\begin{gathered}
5 \sqrt{3}-3 \sqrt{3} \\
2 \sqrt{3}
\end{gathered}
$$

sjmplifying expressjons jnvolving varjables

$$
5 \underline{\sqrt{3 x}}-2 \underline{\sqrt{3 x}}=(5-2) \sqrt{3 x}=3 \sqrt{3 x}
$$

$2 \sqrt{3 a^{3}}+5 a \sqrt{3 a}=\frac{2 a}{} \frac{\sqrt{3 a}}{\uparrow}+5 a \sqrt{3 a}=(2 a+5 a) \sqrt{3 a}=7 a \sqrt{3 a}$
$2 \sqrt{3 \cdot a \cdot a^{2}}$
$2 a \sqrt{3 a}$
a. $2 \sqrt{7 y}+3 \sqrt{7 y}$
$5 \sqrt{7 y}$
b. $\sqrt{20 a^{2}}-a \sqrt{45}$

$$
\sqrt{4.5 \cdot a^{2}}-a \sqrt{9.5}
$$

$$
2 a \sqrt{5}-3 a \sqrt{5}
$$

$$
-a \sqrt{5}
$$

MultipLyiNg RadicalS

$$
\begin{aligned}
& \mathfrak{\prime} \\
& \sqrt{a} \cdot \sqrt{b}=\sqrt{a \cdot b}=\sqrt{a b} \\
& \text { The product of square roots is equal to the square root of the product of the radicands }
\end{aligned}
$$

EXAMPIE: $\sqrt{3} \cdot \sqrt{5}=\sqrt{3.5}=\sqrt{15}$

After we multiply, it's possible that we will have to simplify the radicand.
a. $\sqrt{5} \cdot \sqrt{10}=\sqrt{50}$
b. $\sqrt{12} \cdot \sqrt{6}$
c. $\sqrt{10 x} \cdot \sqrt{2 x}$

$$
\begin{array}{ll}
\sqrt{5 \cdot 10} & \sqrt{12 \cdot 6} \\
\sqrt{5 \cdot 5 \cdot 2} & \sqrt{2 \cdot 6 \cdot 6} \\
\sqrt{5 \cdot 5 \cdot 2} &
\end{array}
$$

c) $\sqrt{10 \cdot 2 \cdot x \cdot x}$

D8 Operations with Square Roots_3rd.GWB - 17/19 - Thu Aug 112216 15:39:40
a. $\sqrt{3} \cdot \sqrt{6}$
b. $\sqrt{3} \cdot \sqrt{18}$
c. $\sqrt{8 a} \cdot \sqrt{3 a}$

$$
\begin{aligned}
& \sqrt{3.6} \\
& \sqrt{3 \cdot 3 \cdot 2} \\
& 3 \sqrt{2}
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{3 \cdot 18} \\
\sqrt{3 \cdot 3-6} \\
3 \sqrt{6}
\end{gathered}
$$

$$
\sqrt{8 a \cdot 3 a}
$$

$$
3 \sqrt{3} \cdot 5 \sqrt{7}
$$

a. $(3 \sqrt{3})(5 \sqrt{7})$
b. $(5 \sqrt{7})(2 \sqrt{14})$
c. $(\sqrt{5 x})(3 \sqrt{15 x})$

$$
\frac{15 \sqrt{3.7}}{15 \sqrt{21}}
$$

$10 \sqrt{7.14}$
$3 \sqrt{5 \cdot 15 \cdot x \cdot x}$
$10 \sqrt{7.7 \cdot 2} \quad 3 \sqrt{5 \cdot 5 \cdot 3 \cdot x \cdot x}$

$5 x \cdot 5 x^{2}$
$15 x^{3}$

$10.7 \sqrt{2}$
$70 \sqrt{2}$
$3 \cdot 5 \cdot x \sqrt{3}$
$15 \times \sqrt{3}$

HW \#7: Operations with Radicals

