Simplifying Rational Expressions

Examples of rational expressions

$$
\frac{4}{3 x}, \frac{x-8}{x+3}, \frac{4 y-7}{y^{2}+5 y-9}
$$

Steps to Simplifying a Rational Expression:

Step 1: Factor the numerator and the denominator completely looking for common factors.

Step 2: Divide the numerator and denominator by the common factor.
Step 3: Multiply across to get your answer.

$$
\begin{array}{ll}
\frac{12}{3}=4 & \frac{0}{12}=0 \\
\frac{-12}{3}=-4 & \frac{12}{1}=12 \\
\frac{12}{12}=1
\end{array}
$$

So, $f(x)=\frac{7}{x+1}=\frac{7}{-1+1}+\frac{7}{0} \quad \frac{7}{1+1}=\frac{7}{2}=3.5$

But x can not be +1 or -1 . Why?

Be sure you use the original denominator when finding these values!

Simplify:

$$
\left.\frac{2 a-6}{10}=\frac{2(a-3)}{5) 2}=\frac{a-3}{5}\right)
$$

$\frac{a-3}{5}$

Simplify:

$$
\frac{\left(a^{2}-10 a+21\right)}{a^{2}-11 a+28}=\frac{(a-3)(a-5)}{(a-7)(a-4)}=\frac{a-3}{a-4}
$$

$a \neq 7$ or 4

Simplify:
$\frac{3 a^{3}-a^{4}}{2 a^{3}-6 a^{2}}=\frac{a b(3-a)}{2 a^{2}(a-3)}$
The expression is undefined when:

$$
=\frac{a(3-a)}{2(a-3)}
$$

$$
\begin{aligned}
& 2 a^{2} \cdot(a-3)=0 \\
& \frac{2 a^{2}}{2}=\frac{0}{2} \quad a-3=0 \\
& \sqrt{a^{2}}=\sqrt{0} \\
& a=0 \\
& a
\end{aligned}
$$

\#'s 11 through 20 from yesterday's worksheet

MuLtipLyiNg aNd DiVidiNg RatioNaL EXpreSSions NoteS

Recall how to MULtipLy FractionS ...
1 - multiply the numerators
2 - multiply the denominators

$$
\begin{aligned}
& \frac{5}{6} \cdot \frac{2}{20}=\frac{10}{120}=\frac{1}{12} \\
& \frac{5}{6} \cdot \frac{\Delta 1}{20} \text { +a } 2=\frac{1}{12}
\end{aligned}
$$

Now try it with rational expressions:

$$
\frac{4 a^{2}}{5 a b^{3}} \cdot \frac{1}{b^{2}} \cdot \frac{1 c c}{12 a a^{3}}=\frac{1 c}{5 a^{2} b^{2}}
$$

Sometimes we will need to factor first:

Step 1: Factor the numerator and the denominator

Step 2: Divide the numerator and denominator by the

common factors

Step 3: Multiply the numerator and the denominator across
list what values cannot be in the denominator

$$
\begin{align*}
& \frac{2 x}{m+3} \cdot \frac{2(m+7)}{2}=4 m_{m=0}^{m \neq-3} \\
& \frac{4}{(m+3)} \cdot \frac{2 m+6}{2}=\frac{4}{3} \cdot \frac{6}{2}=\frac{24}{6}= \tag{4}
\end{align*}
$$

$$
\frac{p \neq 8 p+1}{p+2 x+\frac{1}{8}+8} \cdot \frac{5}{p-2}=\frac{5(p+1)}{p-2} \quad p \neq 2,-8
$$

$$
8 / 9 / 1
$$

$$
\frac{n-6}{\left(2 \pi^{2}\right)} \cdot \frac{2 n^{2}(n-1)}{n-1}=n-6 \quad n \neq 1,0
$$

Recall Dividing with Fractions:

Multiply by the Reciprocal.
Keep, Change, Flip

$$
\frac{4}{5} \div \frac{16}{25}
$$

$$
\frac{4}{5} \cdot \frac{25^{5}}{16 a_{4}}
$$

We can also divide with rational expressions the same way:

$\underline{K}, \underline{\mathbf{C}}, \underline{F}$ or Outer Over Inners

Factor the numerator and the denominator
Divide the numerator and denominator by the common factors

Multiply the numerator and the denominator across
List what values cannot be in the denominator

$$
(y+4)(y-2)
$$

$$
\begin{aligned}
& \frac{y+2}{y^{2}+10 y-24} \div \frac{y^{2}+2 y}{y^{2}+2 y-8} \\
& (y+12)(y-2)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{y \neq-12,2,-2,0, \frac{y+4}{(y+12)}\right.
\end{aligned}
$$ $+4<_{2}^{-8}-2$

$$
\begin{aligned}
& \frac{x-3}{x^{2}+4 x-12} \div \frac{2 x^{2}-6 x}{x-2} \\
& \frac{(x-3)}{(x+6)(x-2)} \cdot \frac{x-2}{2 x(x-3)}=\frac{1}{2 x(x+6)} \\
&
\end{aligned}
$$

HW \#1: Rational Expressions

