Warmup:

Simplify each and state the excluded values.

$$
\begin{aligned}
& \text { 1) } \frac{p^{2}-5 p-36}{p^{2}+14 p+40}=\frac{(p-9)(p+4)}{(p+10)(p+4)} \\
& p \neq-10,-4 \\
& p+10
\end{aligned}
$$

2) $\frac{v^{2}+18 v+81}{8 v+72}$

$$
\begin{aligned}
& =\frac{(v+9)(v+g)}{8(v+9)} \\
& =\frac{v+9}{8} \quad v t-9
\end{aligned}
$$

Quiz

Solving Rational Equations

A rational equation is an equation containing one or more rational expressions.

\[

\]

Since the denominator of a fraction can NEVER be equal to zero, there are excluded values for the variable in a rational expression or equation. What are the excluded values for the above examples?

Solving Rational Equations (2 types of equations are possible)
1)

$$
\begin{aligned}
& \frac{1}{x} \neq \frac{1}{4-x} \quad x \neq 0 \text { or } 4 \\
& 1 \cdot x=1(4-x) \\
& \begin{aligned}
x & =4-x \\
\frac{+x}{\partial x} & =\frac{4}{2}
\end{aligned} \\
& x=2
\end{aligned}
$$

$$
\begin{aligned}
& 2)\left(x+\frac{6}{x}=-5\right. \\
& \left(x \cdot x \cdot \frac{x}{1}+\frac{6}{x}\right)=-5 \\
& \frac{x^{2}}{x}+\frac{6}{x}=-5 \\
& \frac{x^{2}+6}{x}=\frac{-5}{1} \\
& 1\left(x^{2}+6\right)=-5 \cdot x \\
& x^{2}+6=-5 x \\
& +5 x+5 x \\
& x^{2}+5 x+6=0 \\
& (x+2)(x+3)=0 \\
& x=-2 \quad x=-3 \quad x \neq 0
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{1}{2} \geqslant \frac{\pi x}{6} & x=3 \\
\frac{6}{2}=\frac{2 x}{2} & 6=2 x \\
3=x &
\end{array}
$$

To solve any rational equation we want to clear out the denominators.

1) $\frac{1}{x}=\frac{1}{4-x}$

To solve a proportion, we want to simply cross multiply and solve the resulting equation.

To solve a rational equation that is not a proportion, we want to multiply every term in the equation by the
2) $x+\frac{6}{x}=-5$ Lowest Common Multiple (LCM) of every denominator.

This will clear out the denominators, allowing us to solve the resulting equation.

$$
\frac{x}{1}+\frac{6}{x}=\frac{-5}{1}
$$

$$
\begin{array}{r}
1\left\{x \left\{\begin{array}{c}
1 \\
1 x \text { or } x \\
x-\frac{x}{1}+\frac{-6}{x}=x \cdot-5
\end{array}\right.\right.
\end{array}
$$

$$
x^{2}+6=-5 x
$$

Solve the Following Equations.

$$
\begin{align*}
& \begin{array}{l}
\text { 3) } \begin{array}{l}
\frac{x-7}{x+2}=\frac{1}{4} \quad x \neq-2 \\
4(x-7)=1(x+2)
\end{array}\{2 \not x\{3 x x\} \text { 万 }
\end{array} \\
& \text { 4) } \frac{x+5}{2 x}+\frac{x+3}{3 x}=\frac{1}{3} \\
& \begin{array}{l}
4 x-28=\underset{-x}{4 x}+2
\end{array}\left(2 \cdot 3 \cdot x \quad \frac{2 \cdot 3 \cdot x}{}\left[\frac{x+5}{8 x}+\frac{x+3}{2 x}=\frac{1}{8}\right]\right. \\
& \begin{aligned}
3 x-28 & =2 \\
+28 & +28
\end{aligned} \\
& 3(x+5)+2(x+3)=2 x(1) \\
& 3 x+15+2 x+6=2 x \\
& \begin{array}{l}
\frac{3 x}{3}=\frac{30}{3} \\
x=10 \quad x \neq-2
\end{array} \\
& \begin{aligned}
& 5(x+21=2 x \\
&-5 x
\end{aligned} \\
& \frac{21}{-3}=\frac{-3 x}{-3}
\end{align*}
$$

$$
\text { 7) } \frac{2}{x+5}+\frac{1}{x-5}=\frac{16}{x^{2}-25}
$$

Sometimes we will get solutions that are in our list of excluded values.
These solutions are what we call extraneous solutions.

$$
t+3
$$

Remember to check every solution to see if it is extraneous.

$$
\text { L.C.D }=n+3
$$

$$
\int-(\underbrace{n+6)(n+3)}=n+4
$$

$$
1-\left(n^{2}+3 n+6 n+18\right)=n+4
$$

$$
1-\left(n^{2}+9 n+18\right)=n+4
$$

$$
\begin{array}{r}
1-n^{2}-9 n-18=n+4 \\
-1
\end{array}
$$

$$
\begin{gathered}
0=n^{2}+10 n+21 \\
0=(n+7)(n+3) \\
n=-7 \text { or }-\beta
\end{gathered} \quad \begin{aligned}
& -n^{2}-9 n=n+21 \\
& +9 n+9 n \\
& \\
& \\
& +n^{2}=10 n+21 \\
& +n^{2}+n^{2}
\end{aligned}
$$

Homework:

Solving Rational Equations

