$\qquad$

Determine whether the following sequences are arithmetic, geometric, or other. If arithmetic or geometric, identify the common difference or common ratio, write the explicit and recursive formula, and find the $10^{\text {th }}$ term.

1) $\frac{5}{3}, 5,15,45, \ldots$
2) $1,4,9,16, \ldots$
3) $-45,-61,-77,-93, \ldots$
4) $-3,1,5,9, \ldots$
5) $-30,15,-7.5,3.75, \ldots$

For each geometric sequence, write the recursive and explicit formulas. Then find the $8^{\text {th }}$ term.
6) $a_{1}=4, r=-3$
7)
$a_{1}=-\frac{1}{4}, r=-12$
8) $a_{1}=-2, r=\frac{1}{6}$
9) $a_{1}=90, r=-\frac{1}{3}$
$\qquad$

## Write an explicit formula for the following situations and use it to answer the questions.

10) The end of a spring is pulled as far as it will go and then is released. On the first bounce back it extends 54 cm . On its second bounce back it extends 18 cm . On its third bounce back it extends 6 cm . How long does the spring extend after $7,8,9$, and 10 bounce backs?
11) Gordon Moore, co-founder of Intel, suggested that the number of transistors on a square inch of integrated circuit in a computer chip would double every 18 months. If the number of transistors on a square inch of integrated circuit started at 10, find the number of transistors over the course of the next 10 years.
12) A culture of bacteria doubles every 2 hours. If there are 500 bacteria at the beginning, how many bacteria will there be after 24 hours? Graph this situation.

