\qquad

1. Determine which of the following tables could represent a linear equation. For each that could be linear, find a linear equation that models the data.
a.

X	Y
5	3
10	28
20	58
25	93

b.

X	Y
0	-5
5	20
10	45
15	70

2. A mountain climber is scaling a $400-\mathrm{ft}$ cliff. The climber starts at the bottom at $t=0$ and climbs at a constant rate of 124 feet per hour.
a. Complete the table.

Time t, (hours)	0	1	2	3	4
Distance (ft)					

b. Calculate and interpret the slope.

For each additional \qquad , the mountain climber scales \qquad .
b. Calculate and interpret the y-intercept.

At the beginning of the climb, when time $=$ \qquad the mountain climber has scaled \qquad feet.
c. Use the slope and y-intercept to write the linear model for the distance y (in feet) that the climber climbs in terms of time (in hours).

$$
y=
$$

d. After $31 / 2$ hours, has the climber reached the top of the cliff? Show work.
e. Use your linear model in part \#1c to determine how long it takes for the climber to reach the top.
\qquad
3. Renting a canoe costs $\$ 10$ plus $\$ 18$ per day. The linear model for this situation relates the total costs of renting a canoe, y, with the number of days rented, x.

Days Rented(x)	1	2	3	4	5
Total Costs (y)					

a. Complete the table and graph this data.
b. Calculate and interpret the slope.

For each additional \qquad the cost to rent a canoe
increases \qquad .

c. Determine and interpret the y-intercept.

The initial cost to rent a canoe, when days = \qquad is \qquad .
d. Use the slope and y-intercept to write the linear model for total cost to rent a canoe, y, as a function of days, x.

$$
y=
$$

e. Use your model to determine the cost to rent a canoe for 7 days.
f. Use your model to determine how many days you could rent a canoe if you had $\$ 190$ to spend.

