Add or Subtract Radical Expressions

To be considered like radicals they have to be the same root and have the same number inside the house (called the radicand). For example,
$2 \sqrt{3}$ and $5 \sqrt{3}$ are like radicals
$\sqrt{2}$ and $\sqrt{5}$ are not like radicals - they have different radicands
To add or subtract radical expressions, the radicands must be alike in the same way that monomial terms must be alike to add or subtract.

Monomials
$4 \mathrm{x}+2 \mathrm{x}=$ \qquad
$9 y-7 y=$ \qquad

You try!!

a. $2 \sqrt{5}+7 \sqrt{5}$
b. $9 \sqrt{7}-\sqrt{7}$
c. $5 \sqrt{3}-2 \sqrt{3}+\sqrt{3}$
d. $10 \sqrt{6}+4 \sqrt{6}-5 \sqrt{2}$

If a sum or difference involves terms that are not like radicals, we may be able to combine terms after simplifying the radicals according to our earlier methods.

Simplify each expression

$3 \sqrt{2}+\sqrt{8}$
we don't have like radicals, but we can simplify $\sqrt{8}$. Remember $\ldots \sqrt{8}=$
$5 \sqrt{3}-\sqrt{12}$
we don't have like radicals, but we can simplify $\sqrt{12}$. Remember $\ldots \sqrt{12}=$ \qquad
a. $\sqrt{2}+\sqrt{18}$
b. $5 \sqrt{3}-\sqrt{27}$

Simplifying Expressions Involving Variables

$$
\begin{aligned}
5 \sqrt{3 x}-2 \sqrt{3 x} & =(5-2) \sqrt{3 x}=3 \sqrt{3 x} \\
2 \sqrt{3 a^{3}}+5 a \sqrt{3 a} & =\ldots \quad \sqrt{\ldots}+5 a \sqrt{3 a}=(\ldots+5 a) \sqrt{3 a}=\ldots \quad \sqrt{3 a}
\end{aligned}
$$

a. $2 \sqrt{7 y}+3 \sqrt{7 y}$
b. $\sqrt{20 a^{2}}-a \sqrt{45}$

Multiplying Radicals

Example: $\sqrt{3} \cdot \sqrt{5}=\sqrt{ }=\sqrt{ }$
After we multiply, it's possible that we will have to simplify the radicand.
a. $\sqrt{5} \cdot \sqrt{10}$
b. $\sqrt{12} \cdot \sqrt{6}$
c. $\sqrt{10 x} \cdot \sqrt{2 x}$
a. $\sqrt{3} \cdot \sqrt{6}$
b. $\sqrt{3} \cdot \sqrt{18}$
c. $\sqrt{8 a} \cdot \sqrt{3 a}$
a. $(3 \sqrt{3})(5 \sqrt{7})$
b. $(5 \sqrt{7})(2 \sqrt{14})$
c. $(\sqrt{5 x})(3 \sqrt{15 x})$

